Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Full Paper
  • Published:

The −844C/T polymorphism in the Fas ligand promoter associates with Taiwanese SLE

Abstract

FasL expression is critical in T-cell activation-induced apoptosis, which is involved in lupus pathogenesis. This study identified two SNPs in the FasL promoter regions from –1145 to –45 by genomic DNA sequencing. The –844C/T polymorphism was previously described by its location in and affect on the CCAAT/enhancer-binding protein β (C/EBPB β)-binding site and the other (–1094A/C, a novel polymorphism) was located at the NF-κB transcription-binding site. FasL gene promoter polymorphisms were genotyped in 260 systemic lupus erythematosus (SLE) patients and 280 healthy controls using MassArray matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry. The distribution of FasL promoter –844C/C genotype, predominant in Taiwanese, was skewed in Taiwanese SLE patients (odds ratio: 1.53; P-value=0.014). FasL promoter −844C/T polymorphism genotype distributions of Taiwanese, African Americans, and Caucasians differed. Moreover, no particular clinical association of −844C/T and −1094A/C polymorphisms with SLE was found in patients in Taiwan. This study confirmed that −844C/C genotype is associated with lupus susceptibility. The –1094A/C polymorphism is not significantly associated with lupus disease susceptibility, albeit the role of NF-κB pathway in FasL promoter activation remains unclear. Fas/FasL pathway may contribute to SLE polygenic disease entity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Horwitz DA, Stohl W, Gray JD . T lymphocytes, natural killer cells and immune regulation. In: Wallace DJ, Hann BH (eds). In Dubois' Lupus Erythematosus. Lippincott Willams & Wilkins: Philadelphia, Pennsylvania, 2001, pp 155–185.

    Google Scholar 

  2. Strasser A, O'Connor L, Dixit VM et al. Apoptosis signaling. Annu Rev Biochem 2000; 69: 217–245.

    Article  CAS  Google Scholar 

  3. Emlen W, Niebur J, Kadera R . Accelerated in vitro apoptosis of lymphocytes from patients with systemic lupus erthematosus. J Immunol 1994; 152: 3685–3692.

    CAS  PubMed  Google Scholar 

  4. Silvestris F, Grinello D, Tucci M, Cafforio P, Dammacco F . Enhancement of T cell apoptosis correlates with increased serum levels of soluble Fas (CD95/Apo-1) in active lupus. Lupus 2003; 12: 8–14.

    Article  CAS  Google Scholar 

  5. Grondal G, Traustadottir KH, Kristjansdottir H et al. Increased T-lymphocyte apoptosis/necrosis and IL-10 producing cells in patients and their spouses in Icelandic systemic lupus erythematosus multicase families. Lupus 2002; 11: 435–442.

    Article  CAS  Google Scholar 

  6. Courtney PA, Crockard AD, Williamson K, Irvine AE, Kennedy RJ, Bell AL . Increased apoptotic peripheral blood neutrophils in systemic lupus erthematosus: relations with disease activity, antibodies to double stranded DNA, and neutrophia. Ann Rheum Dis 1999; 58: 309–314.

    Article  CAS  Google Scholar 

  7. McConnell JR, Crockard AD, Cairns AP, Bell AL . Neutrophils from systemic lupus erythematosus patients demonstrate increased nuclear DNA damage. Clin Exp Rheumatol 2002; 20: 653–660.

    CAS  PubMed  Google Scholar 

  8. Perniok A, Wedekind F, Heremann M, Specker C, Schneider M . High levels of circulating early apoptic peripheral blood mononuclear cells in systemic lupus erthematosus. Lupus 1998; 7: 113–118.

    Article  CAS  Google Scholar 

  9. Ren Y, Tang J, Mok MY, Chan AW, Wu A, Lau CS . Increased apoptotic neutrophils and macrophages and impaired macrophage phagocytic clearance of apoptotic neutrophils in systemic lupus erythematosus. Arthritis Rheum 2003; 48: 2888–2897.

    Article  Google Scholar 

  10. Shoshan Y, Shapira I, Toubi E, Frolkis I, Yaron M, Mevorach D . Accelerated Fas-mediated apoptosis of monocytes and maturing macrophages from patients with systemic lupus erythematosus: relevance to in vitro impairment of interaction with iC3b-opsonized apoptotic cells. J Immunol 2001; 167: 5963–5969.

    Article  CAS  Google Scholar 

  11. Cairns AP, Crockard AD, McConnell JR, Courtney PA, Bell AL . Reduced expression of CD44 on monocytes and neutrophils in systemic lupus erythematosus: relations with apoptotic neutrophils and disease activity. Ann Rheum Dis 2001; 60: 950–955.

    Article  CAS  Google Scholar 

  12. Herrmann M, Voll RE, Zoller OM, Hagenhoferr M, Ponner BB, Kalden JR . Impaired phagocytosis of apoptotic cells material by monocytes-derived macrophages from patients with systemic lupus erthematosus. Arthritis Rheum 1998; 41: 1241–1250.

    Article  CAS  Google Scholar 

  13. Lee HO, Ferguson TA . Biology of FasL. Cytokine Growth Factor Rev 2003; 14: 325–335.

    Article  CAS  Google Scholar 

  14. Cohen PL, Eisenberg RA . Lpr and gld: single gene models of systemic autoimmunity and lymphoproliferative disease. Annu Rev Immunol 1991; 9: 243–269.

    CAS  Google Scholar 

  15. Takahashi T, Tanaka M, Brannan CI et al. Generalized lymphoproliferative disease in mice caused by a point mutation in the Fas ligand. Cell 1994; 76: 969–976.

    Article  CAS  Google Scholar 

  16. Rieux-Laucat F, Fischer A, Deist FL . Cell-death signaling and human disease. Curr Opin Immunol 2003; 15: 325–331.

    Article  CAS  Google Scholar 

  17. Wang J, Zheng L, Lobito A et al. Inherited human caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II. Cell 1999; 98: 47–58.

    Article  CAS  Google Scholar 

  18. Drappa J, Vanishnaw AK, Sullivan KE, Chu JL, Elkon KB . The Canale Smith syndrome: an inherited autoimmune disorder associated with defective lympocyte apoptosis and mutations in the Fas gene. N Engl J Med 1996; 335: 1643–1649.

    Article  CAS  Google Scholar 

  19. Vaishnaw AK, Toubi E, Ohsko S et al. The spectrum of apoptotic defects and clinical manifestations, including systemic lupus erthematosus, in human CD95 (Fas/APO-1) mutations. Arthritis Rheum 1999; 42: 1833–1842.

    Article  CAS  Google Scholar 

  20. Kovacs B, Liossis SN, Dennis GJ, Tsokos GC . Increased expression of functional Fas-ligand in activated T cells from patients with systemic lupus erythematosus. Autoimmunity 1997; 25: 213–221.

    Article  CAS  Google Scholar 

  21. McNally J, Yoo DH, Drappa J et al. Fas ligand expression and function in systemic lupus erythematosus. J Immunol 1997; 159: 4628–4636.

    CAS  PubMed  Google Scholar 

  22. Eneslatt K, Rantapaa-Dahlqvist S, Uddhammar A, Sundqvist KG . The regulation of FasL expression—a distinguishing feature between monocytes and T lymphocytes/NK cells with possible implications for SLE. J Clin Immunol 2001; 21: 183–192.

    Article  CAS  Google Scholar 

  23. Suzuki N, Ichino M, Mihara S, Kaneko S, Sakane T . Inhibition of Fas/Fas ligand-mediated apoptotic cell death of lymphocytes in vitro by circulating anti-Fas ligand autoantibodies in patients with systemic lupus erythematosus. Arthritis Rheum 1998; 41: 344–353.

    Article  CAS  Google Scholar 

  24. Sakata K, Sakata A, Vela-Roch N et al. Fas (CD95)-transduced signal preferentially stimulates lupus peripheral T lymphocytes. Eur J Immunol 1998; 28: 2648–2660.

    Article  CAS  Google Scholar 

  25. Courtney PA, Crockard AD, Williamson K, McConnell J, Kennedy RJ, Bell AL . Lymphocyte apoptosis in systemic lupus erythematosus: relationships with Fas expression, serum soluble Fas and disease activity. Lupus 1999; 8: 508–513.

    Article  CAS  Google Scholar 

  26. Al-Maini MH, Mountz JD, Al-Mohri HA et al. Serum levels of soluble Fas correlate with indices of organ damage in systemic lupus erthematosus. Lupus 2000; 9: 132–139.

    Article  CAS  Google Scholar 

  27. Wu J, Wilson J, He J, Xiang L, Schur PH, Mountz JD . Fas ligand mutation in a patient with systemic lupus erthematosus and lymphoproliferative disease. J Clin Invest 1996; 98: 1107–1113.

    Article  CAS  Google Scholar 

  28. Kojima T, Horiuchi T, Nishizaka H et al. Analysis of Fas ligand gene mutation in patients with systemic lupus erthematosus. Arthritis Rheum 2000; 43: 135–139.

    Article  CAS  Google Scholar 

  29. Takahashi T, Tanaka M, Inazawa J, Abe T, Suda T, Nagata S . Human Fas ligand: gene structure, chromosomal location and species specificity. Int Immunol 1994; 6: 1567–1574.

    Article  CAS  Google Scholar 

  30. Li-Weber M, Krammer PH . Function and regulation of the CD95 (APO-1/Fas) ligand in the immune system. Semin Immunol 2003; 15: 145–157.

    Article  CAS  Google Scholar 

  31. Wu J, Metz C, Xu X et al. A novel polymorphic CAAT/enhancer-binding protein beta element in the FasL gene promoter alters Fas ligand expression: a candidate background gene in African American systemic lupus erythematosus patients. J Immunol 2003; 170: 132–138.

    Article  CAS  Google Scholar 

  32. White S, Rosen A . Apoptosis in systemic lupus erythematosus. Curr Opin Rheumatol 2003; 15: 557–562.

    Article  CAS  Google Scholar 

  33. Salmon M, Gordon C . The role of apoptosis in systemic lupus erthematosus. Rheumatology 1999; 38: 1177–1183.

    Article  CAS  Google Scholar 

  34. Siegel RM, Chan FK, Chun HJ, Lenardo MJ . The multifaceted role of Fas signaling in immune cell homeostasis and autoimmunity. Nat Immunol 2000; 1: 469–474.

    Article  CAS  Google Scholar 

  35. Huizinga TW, Pisetsky DS, Kimberly RP . Associations, populations, and the truth: recommendations for genetic association studies in arthritis & rheumatism. Arthritis Rheum 2004; 50: 2066–2071.

    Article  Google Scholar 

  36. Stuck BJ, Pani MA, Besrour F et al. No association of two Fas gene polymorphisms with Hashimoto's thyroiditis and Graves' disease. Eur J Endocrinol 2003; 149: 393–396.

    Article  CAS  Google Scholar 

  37. Stuck BJ, Pani MA, Besrour F et al. Fas ligand gene polymorphisms are not associated with Hashimoto's thyroiditis and Graves' disease. Hum Immunol 2003; 64: 285–289.

    Article  CAS  Google Scholar 

  38. Nolsoe RL, Kristiansen OP, Larsen ZM, Johannesen J, Pociot F, Mandrup-Poulsen T . Complete mutation scan of the human Fas ligand gene: linkage studies in Type I diabetes mellitus families. Diabetologia 2002; 45: 134–139.

    Article  CAS  Google Scholar 

  39. Matsui K, Omura S, Cui H, Schauer SL, Sonenshein GE, Ju ST . Proteasome regulation of Fas ligand cytotoxicity. Eur J Immunol 1997; 27: 2269–2278.

    Article  CAS  Google Scholar 

  40. Cui H, Matsui K, Omura S et al. Proteasome regulation of activation-induced T cell death. Proc Natl Acad Sci USA 1997; 94: 7515–7520.

    Article  CAS  Google Scholar 

  41. Hsu SC, Gavrilin MA, Lee HH, Wu CC, Han SH, Lai MZ . NF-kappa B-dependent Fas ligand expression. Eur J Immunol 1999; 29: 2948–2956.

    Article  CAS  Google Scholar 

  42. Holtz-Heppelmann CJ, Algeciras A, Badley AD, Paya CV . Transcriptional regulation of the human FasL promoter-enhancer region. J Biol Chem 1998; 273: 4416–4423.

    Article  CAS  Google Scholar 

  43. Li-Weber M, Laur O, Dern K, Krammer PH . T cell activation-induced and HIV tat-enhanced CD95(APO-1/Fas) ligand transcription involves NF-kappaB. Eur J Immunol 2000; 30: 661–670.

    Article  CAS  Google Scholar 

  44. Kasibhatla S, Genestier L, Green DR . Regulation of fas-ligand expression during activation-induced cell death in T lymphocytes via nuclear factor kappaB. J Biol Chem 1999; 274: 987–992.

    Article  CAS  Google Scholar 

  45. Kasibhatla S, Brunner T, Genestier L, Echeverri F, Mahboubi A, Green DR . DNA damaging agents induce expression of Fas ligand and subsequent apoptosis in T lymphocytes via the activation of NF-kappa B and AP-1. Mol Cell 1998; 1: 543–551.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Chang Gung Memorial Hospital for financially supporting this research under Grant No. CMRP 1255.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J -Y Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, JY., Wang, CM., Ma, CC. et al. The −844C/T polymorphism in the Fas ligand promoter associates with Taiwanese SLE. Genes Immun 6, 123–128 (2005). https://doi.org/10.1038/sj.gene.6364158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364158

Keywords

This article is cited by

Search

Quick links