Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Full Paper
  • Published:

Alternatively spliced transcripts of the thymus-specific protease PRSS16 are differentially expressed in human thymus

Abstract

The putative serine protease PRSS16 is abundantly expressed in the thymic cortex and the gene is encoded within the HLA I complex. Although its function is not yet defined, the very restricted expression points to a role in T-cell development in the thymus. In this study, we show that the PRSS16 mRNA is alternatively spliced to generate at least five transcripts. Apart from the full-length sequence, we found two other isoforms with all putative active site residues of the serine protease, suggesting that those variants may also be functional. Semi-quantitative analysis of the splice variants in different tissue samples revealed a strong correlation between the specific formation of alternatively spliced PRSS16 transcripts and the age and thymus pathology status of the donor. Newborn thymi express mostly the PRSS16-4 and -5 isoforms and lack the PRSS16-1 transcript, which appears around 2 years of age and stays until adulthood. Incidentally, thymi from myasthenia gravis (MG) patients with thymoma showed a marked decrease in the expression of the full-length PRSS16-1 and increased expression of the smaller isoforms. The data suggest a potential role of the PRSS16 isoforms in the postnatal morphogenesis of the thymus and in the thymus pathology related to MG.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Bowlus CL, Ahn J, Chu T, Gruen JR . Cloning of a novel MHC-encoded serine peptidase highly expressed by cortical epithelial cells of the thymus. Cell Immunol 1999; 196: 80–86.

    Article  CAS  PubMed  Google Scholar 

  2. Carrier A, Wurbel MA, Mattei MG et al. Chromosomal localization of two mouse genes encoding thymus-specific serine peptidase and thymus-expressed acidic protein. Immunogenetics 2000; 51: 984–986.

    Article  CAS  PubMed  Google Scholar 

  3. Cheunsuk S, Sparks R, Noveroske JK et al. Expression, genomic structure and mapping of the thymus specific protease prss16: a candidate gene for insulin dependent diabetes mellitus susceptibility. J Autoimmun 2002; 18: 311–316.

    Article  PubMed  Google Scholar 

  4. Beeson D, Bond AP, Corlett L et al. Thymus, thymoma, and specific T cells in myasthenia gravis. Ann N Y Acad Sci 1998; 841: 371–387.

    Article  CAS  PubMed  Google Scholar 

  5. Vincent A . Unravelling the pathogenesis of myasthenia gravis. Nat Rev Immunol 2002; 2: 797–804.

    Article  CAS  PubMed  Google Scholar 

  6. Bofill M, Janossy G, Willcox N et al. Microenvironments in the normal thymus and the thymus in myasthenia gravis. Am J Pathol 1985; 119: 462–473.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Alpert LI, Papatestas A, Kark A et al. A histologic reappraisal of the thymus in myasthenia gravis. A correlative study of thymic pathology and response to thymectomy. Arch Pathol 1971; 91: 55–61.

    CAS  PubMed  Google Scholar 

  8. Scadding GK, Vincent A, Newsom-Davis J, Henry K . Acetylcholine receptor antibody synthesis by thymic lymphocytes: correlation with thymic histology. Neurology 1981; 31: 935–943.

    Article  CAS  PubMed  Google Scholar 

  9. Sommer N, Willcox N, Harcourt GC, Newsom-Davis J . Myasthenic thymus and thymoma are selectively enriched in acetylcholine receptor-reactive T cells. Ann Neurol 1990; 28: 312–319.

    Article  CAS  PubMed  Google Scholar 

  10. Melms A, Schalke BC, Kirchner T et al. Thymus in myasthenia gravis. Isolation of T-lymphocyte lines specific for the nicotinic acetylcholine receptor from thymuses of myasthenic patients. J Clin Invest 1988; 81: 902–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vincent A, Drachman DB . Myasthenia gravis. Adv Neurol 2002; 88: 159–188.

    CAS  PubMed  Google Scholar 

  12. Mizuochi T, Yee ST, Kasai M et al. Both cathepsin B and cathepsin D are necessary for processing of ovalbumin as well as for degradation of class II MHC invariant chain. Immunol Lett 1994; 43: 189–193.

    Article  CAS  PubMed  Google Scholar 

  13. Manoury B, Mazzeo D, Fugger L et al. Destructive processing by asparagine endopeptidase limits presentation of a dominant T cell epitope in MBP. Nat Immunol 2002; 14: 14.

    Google Scholar 

  14. Sercarz EE . Processing creates the self. Nat Immunol 2002; 3: 110–112.

    Article  CAS  PubMed  Google Scholar 

  15. Riese RJ, Wolf PR, Bromme D et al. Essential role for cathepsin S in MHC class II-associated invariant chain processing and peptide loading. Immunity 1996; 4: 357–366.

    Article  CAS  PubMed  Google Scholar 

  16. Bromme D, Li Z, Barnes M, Mehler E . Human cathepsin V functional expression, tissue distribution, electrostatic surface potential, enzymatic characterization, and chromosomal localization. Biochemistry 1999; 38: 2377–2385.

    Article  CAS  PubMed  Google Scholar 

  17. Tolosa E, Li W, Yasuda Y et al. Cathepsin V is involved in the degradation of invariant chain in human thymus and is overexpressed in myasthenia gravis. J Clin Invest 2003; 112: 517–526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Riese RJ, Mitchell RN, Villadangos JA et al. Cathepsin S activity regulates antigen presentation and immunity. J Clin Invest 1998; 101: 2351–2363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shi GP, Villadangos JA, Dranoff G et al. Cathepsin S required for normal MHC class II peptide loading and germinal center development. Immunity 1999; 10: 197–206.

    Article  CAS  PubMed  Google Scholar 

  20. Saegusa K, Ishimaru N, Yanagi K et al. Cathepsin S inhibitor prevents autoantigen presentation and autoimmunity. J Clin Invest 2002; 110: 361–369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Laufer TM, DeKoning J, Markowitz JS et al. Unopposed positive selection and autoreactivity in mice expressing class II MHC only on thymic cortex. Nature 1996; 383: 81–85.

    Article  CAS  PubMed  Google Scholar 

  22. Bodey B, Bodey Jr B, Siegel SE, Kaiser HE . Involution of the mammalian thymus, one of the leading regulators of aging. In Vivo 1997; 11: 421–440.

    CAS  PubMed  Google Scholar 

  23. Douek DC, McFarland RD, Keiser PH et al. Changes in thymic function with age and during the treatment of HIV infection. Nature 1998; 396: 690–695.

    Article  CAS  PubMed  Google Scholar 

  24. Vincent A, Palace J, Hilton-Jones D . Myasthenia gravis. Lancet 2001; 357: 2122–2128.

    Article  CAS  PubMed  Google Scholar 

  25. Muller-Hermelink HK, Marx A . Thymoma. Curr Opin Oncol 2000; 12: 426–433.

    Article  CAS  PubMed  Google Scholar 

  26. Willcox N, Schluep M, Ritter MA et al. Myasthenic and nonmyasthenic thymoma. An expansion of a minor cortical epithelial cell subset? Am J Pathol 1987; 127: 447–460.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Zettl A, Strobel P, Wagner K et al. Recurrent genetic aberrations in thymoma and thymic carcinoma. Am J Pathol 2000; 157: 257–266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Poulin JF, Viswanathan MN, Harris JM et al. Direct evidence for thymic function in adult humans. J Exp Med 1999; 190: 479–486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Anderton SM, Viner NJ, Matharu P et al. Influence of a dominant cryptic epitope on autoimmune T cell tolerance. Nat Immunol 2002; 3: 175–181.

    Article  CAS  PubMed  Google Scholar 

  30. Strobel P, Helmreich M, Menioudakis G et al. Paraneoplastic myasthenia gravis correlates with generation of mature naive CD4(+) T cells in thymomas. Blood 2002; 100: 159–166.

    Article  CAS  PubMed  Google Scholar 

  31. Buckley C, Douek D, Newsom-Davis J et al. Mature, long-lived CD4+ and CD8+ T cells are generated by the thymoma in myasthenia gravis. Ann Neurol 2001; 50: 64–72.

    Article  CAS  PubMed  Google Scholar 

  32. Carrier A, Nguyen C, Victorero G et al Differential gene expression in CD3epsilon- and RAG1-deficient thymuses: definition of a set of genes potentially involved in thymocyte maturation. Immunogenetics 1999; 50: 255–270.

    Article  CAS  PubMed  Google Scholar 

  33. Lie BA, Sollid LM, Ascher H et al A gene telomeric of the HLA class I region is involved in predisposition to both type 1 diabetes and coeliac disease. Tissue Antigens 1999; 54: 162–168.

    Article  CAS  PubMed  Google Scholar 

  34. Lie BA, Todd JA, Pociot F et al The predisposition to type 1 diabetes linked to the human leukocyte antigen complex includes at least one non-class II gene. Am J Hum Genet 1999; 64: 793–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jiang Z-H, Wu JY . Alternative splicing and programmed cell death. Proc Soc Exp Biol Med 1999; 220: 64–72.

    Article  CAS  PubMed  Google Scholar 

  36. Afonina I, Zivarts M, Kutyavin I et al Efficient priming of PCR with short oligonucleotides conjugated to a minor groove binder. Nucleic Acids Res 1997; 25: 2657–2660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jaretzki III A, Barohn RJ, Ernstoff RM et al Myasthenia gravis: recommendations for clinical research standards. Task Force of the Medical Scientific Advisory Board of the Myasthenia Gravis Foundation of America. Ann Thorac Surg 2000; 70: 327–334.

    Article  PubMed  Google Scholar 

  38. Lindstrom JM, Seybold ME, Lennon VA et al Antibody to acetylcholine receptor in myasthenia gravis. Prevalence, clinical correlates, and diagnostic value. Neurology 1976; 26: 1054–1059.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the DFG/SFB 510/D1 (AM, ET), the Association Francaise contre les Myopathies (ET, AM), the fortüne programm of the University of Tübingen, Hertie-Stiftung and the European Union EU-QRLT-2000-01918. We would like to thank C Bowlus for the PRSS16 cDNA and Alex Marx (Würzburg, Germany) for providing control thymomas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Tolosa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luther, C., Wienhold, W., Oehlmann, R. et al. Alternatively spliced transcripts of the thymus-specific protease PRSS16 are differentially expressed in human thymus. Genes Immun 6, 1–7 (2005). https://doi.org/10.1038/sj.gene.6364142

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364142

Keywords

This article is cited by

Search

Quick links