Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Full Paper
  • Published:

Mosaics of gene variations in the Interleukin-10 gene promoter affect interleukin-10 production depending on the stimulation used

Abstract

Interleukin-10 (IL-10), a cytokine involved in many aspects of the immune response shows interindividual variations in their expression. However, genetic variations of the 5′-flanking region of the IL-10 gene (PIL-10) are poorly characterised with respect to different stimuli. New extended haplo- and genotypes are identified present at differing frequencies in three geographically separated populations. Their influence on IL-10 expression have been assessed in vitro after stimulation of leukocytes with lipopolysaccharide (LPS), dibutyryl-cAMP or following immortalisation with Epstein–Barr virus (lymphoblastoid cell line (LCL)). Interindividual differences of IL-10 production were found to be related to single-nucleotide polymorphisms (SNP) haplotype −6752/–6208 in LCLs (P<0.02), and for haplotypes comprising SNPs –6752/-6208/-3538 after LPS stimulation (P<0.03). Carriers of the IL10.G microsatellite with 22, 24 or 26 dinucleotide repeats linked with the −1087G SNP, exhibited the highest levels of IL-10 expression. Contrasting IL-10 secretion patterns were found for IL10.R microsatellite alleles characterised by 15 dinucleotide repeats: after LPS stimulation this allele was associated with high IL-10 production (P<0.007), but with low IL-10 levels in LCLs (P< 0.038). Thus, the effects of mosaics of genetic elements in the PIL-10 on the capacity of leukocytes to produce IL-10 depend on the agent inducing IL-10 expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Eskdale J, Gallagher G, Verweij C et al. Interleukin 10 secretion in relation to human IL-10 locus haplotypes. Proc Natl Acad Sci USA 1998; 95: 9465–9470.

    Article  CAS  Google Scholar 

  2. Gibson AW, Edberg JC, Wu J et al. Novel single nucleotide polymorphisms in the distal IL-10 promoter affect IL-10 production and enhance the risk of systemic lupus erythematosus. J Immunol 2001; 166: 3915–3922.

    Article  CAS  Google Scholar 

  3. Turner DM, Williams DM, Sankaran D et al. An investigation of polymorphism in the interleukin-10 gene promoter. Eur J Immunogenet 1997; 24: 1–8.

    Article  CAS  Google Scholar 

  4. Pravica V, Asderakis A, Perrey C et al. In vitro production of IFN-gamma correlates with CA-repeat polymorphims in the human IFN-gamma gene. Eur J Immunogenet 1999; 26: 1–3.

    Article  CAS  Google Scholar 

  5. Jongeneel C, Briant L, Udalova I et al. Extensive genetic polymorphism in the human tumor necrosis factor region and relation to extended HLA haplotypes. Proc Natl Acad Sci USA 1991; 88: 9717–9721.

    Article  CAS  Google Scholar 

  6. Bidwell J, Keen L, Gallagher G et al. Cytokine gene polymorphism in human disease: on-line databases, supplement 1. Genes Immun 2001; 2: 61–70.

    Article  CAS  Google Scholar 

  7. Kwiatkowski D . Genetic dissection of the molecular pathogenesis of severe infection. Intens Care Med 2000; 26: S89–S97.

    Article  Google Scholar 

  8. Hill AV . The genomics and genetics of human infectious disease susceptibility. Annu Rev Genomics Hum Genet 2001; 2: 373–400.

    Article  CAS  Google Scholar 

  9. Moore KW, O’Garra A, de WMR et al. Interleukin-10. Annu Rev Immunol. 1993; 11: 165–190.

    Article  CAS  Google Scholar 

  10. Eskdale J, Kube D, Tesch H et al. Mapping of the human IL10 gene and further characterization of the 5′ flanking sequence. Immunogenetics 1997; 46: 120–128.

    Article  CAS  Google Scholar 

  11. Eskdale J, Kube D, Peat J et al. The human interleukin-10 (IL-10) locus: mapping of novel structural homologues of IL-10 reveals a cluster of four IL-10 family members within approximately 140 kb on chromosome 1Q31-32. Arthritis Rheum 2000; 43: S53–S53.

    Google Scholar 

  12. Eskdale J, Keijsers V, Huizinga T et al. Microsatellite alleles and single nucleotide polymorphisms (SNP) combine to form four major haplotype families at the human interleukin-10 (IL-10) locus. Genes Immun 1999; 1: 151–155.

    Article  CAS  Google Scholar 

  13. D’Alfonso S, Rampi M, Bocchio D et al. Systemic lupus erythematosus candidate genes in the Italian population: evidence for a significant association with interleukin-10. Arthritis Rheum 2000; 43: 120–128.

    Article  Google Scholar 

  14. Anaya JM, Eskdale J, Correa PA et al. IL-10 microsatellite polymorphisms in primary Sjogren's syndrome (pSS). Arthritis Rheum 1999; 42: S137–S137.

    Article  Google Scholar 

  15. Cavet J, Middleton PG, Segall M et al. Recipient tumor necrosis factor-alpha and interleukin-10 gene polymorphisms associate with early mortality and acute graft-versus-host disease severity in HLA-matched sibling bone marrow transplants. Blood 1999; 94: 3941–3946.

    CAS  Google Scholar 

  16. Eskdale J, Wordsworth P, Bowman S et al. Association between polymorphisms at the human IL-10 locus and systemic lupus erythematosus. Tissue Antigens 1997; 49: 635–639.

    Article  CAS  Google Scholar 

  17. Eskdale J, McNicholl J, Wordsworth P et al. Interleukin-10 microsatellite polymorphisms and IL-10 locus alleles in rheumatoid arthritis susceptibility. Lancet 1998; 352: 1282–1283.

    Article  CAS  Google Scholar 

  18. Eskdale J, Stuart RC, Gallagher G . Interleukin-10 polymorphisms in gastro-oesophageal cancers. Gastroenterology 2000; 118: A42–A42.

    Article  Google Scholar 

  19. Hajeer A, Lazarus M, Turner D et al. IL-10 gene promoter polymorphisms in rheumatoid arthritis. Scand J Rheum 1998; 27: 142–145.

    Article  CAS  Google Scholar 

  20. Helminen M, Kilpinen S, Virta M et al. Susceptibility to primary Epstein-Barr virus infection is associated with interleukin-10 gene promoter polymorphism. J Infect Dis 2001; 184: 777–780.

    Article  CAS  Google Scholar 

  21. Huang DR, Zhou YH, Xia SQ et al. Markers in the promoter region of interleukin-10 (IL-10) gene in myasthenia gravis: implications of diverse effects of IL-10 in the pathogenesis of the disease. J Neuroimmunol 1999; 94: 82–87.

    Article  CAS  Google Scholar 

  22. Rosenwasser LJ, Klemm DJ, Dresback JK et al. Promoter polymorphisms in the chromosome 5 gene cluster in asthma and atopy. Clin Exp Allergy 1995; 2: 74–78.

    Article  Google Scholar 

  23. Tagore A, Gonsalkorale WM, Pravica V et al. Interleukin-10 (IL-10) genotypes in inflammatory bowel disease. Tissue Antigens 1999; 54: 386–390.

    Article  CAS  Google Scholar 

  24. Westendorp RG . Genetic influence on cytokine production in meningococcal disease. Lancet 1997; 349: 1912–1913.

    Article  CAS  Google Scholar 

  25. Howell W, Turner S, Bateman A et al. IL-10 promoter polymorphisms influence tumour development in cutaneous malignant melanoma. Genes Immun 2001; 2: 25–31.

    Article  CAS  Google Scholar 

  26. Kube D, Platzer C, von Knethen A et al. Isolation of the human interleukin 10 promoter. Characterization of the promoter activity in Burkitt's lymphoma cell lines. Cytokine 1995; 7: 1–7.

    Article  CAS  Google Scholar 

  27. Kube D, Laser H, von Knethen A et al. The AT-rich region between −54 to −66 is important for the promoter activity of interleukin-10 in Epstein–Barr virus positive Burkitt's lymphoma cells. Genes Immun 1999; 1: 105–114.

    Article  CAS  Google Scholar 

  28. Brightbill H, Plevy S, Modlin R et al. A prominent role for SP1 during LPS induction of the IL-10 promoter in macrophages. J Immunol 2000; 164: 1940–1951.

    Article  CAS  Google Scholar 

  29. Wei M, Lim W, Gee S et al. The p38 pathway regulates the human IL-10 promoter via the activation of SP1 transcription factor in LPS stimulated human macrophages. J Biol Chem 2001; 276: 13744–13749.

    Article  Google Scholar 

  30. Benkhart EM, Siedlar M, Wedel A et al. Role of Stat3 in lipopolysaccharide-induced IL-10 gene expression. J Immunol 2000; 165: 1612–1617.

    Article  CAS  Google Scholar 

  31. Crawley E, Kay R, Sillibourne J et al. Polymorphic haplotypes of the IL-10 5′ flanking region determine variable IL-10 transcription and are associated with particular phenotypes of juvenile rheumatoid arthritis. Arthritis Rheum 1999; 42: 1101–1108.

    Article  CAS  Google Scholar 

  32. Kube D, Rieth H, Eskdale J et al. Structural characterisation of the distal 5′ flanking region of the human interleukin-10 gene. Genes Immun 2001; 2: 181–190.

    Article  CAS  Google Scholar 

  33. Kube D, Mörmann M, Tomiuk J et al. Simultaneous analysis of interleukin-10 gene microsatellites and single-nucleotide polymorphisms in parallel with tumour necrosis factor and interferon-gamma short tandem repeats by fluorescence-based polymerase chain reaction. Genes Immun 2003; 4: 459–468.

    Article  CAS  Google Scholar 

  34. Brenner S, Proesch S, Schenke L et al. cAMP-induced interleukin-10 promoter activation depends on CCAAT/enhancer-binding protein expression and monocytic differentiation. J Biol Chem 2003; 278: 5597–5604.

    Article  CAS  Google Scholar 

  35. Reuss E, Fimmers R, Kruger A et al. Differential regulation of interleukin-10 production by genetic and environmental factors: A twin study. Genes Immun 2002; 3: 407–413.

    Article  CAS  Google Scholar 

  36. Song L, Binh V, Duy D et al. Serum cytokine profiles associated with clinical presentation in Vietnamese infected with hepatitis B virus. J Clin Virol 2003; 28: 93–103.

    Article  CAS  Google Scholar 

  37. Kube D, Schmidt D, Mörmann M et al. Semiautomated and simultaneous analysis of the interleukin-10 gene microsatellites IL10G and IL10R by fluorescence-based polymerase chain reaction reveals significant differences in allele distributions between Caucasians (Germany) and Africans (Gabon). Eur Cytokine Netw 2001; 12: 537–544 (3220).

    CAS  PubMed  Google Scholar 

  38. Raymond M, Rousset F . A population genetics software for exact tests and ecumenicism. J Hered 1995; 86: 248–249 (3220).

    Article  Google Scholar 

  39. Rohde K, Fuerst R . Haplotyping and estimation of haplotype frequencies for closely linked biallelic multilocus genetic phenotypes including nuclear family information. Hum Mutat 2001; 17: 289–295.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J Tomiuk and G Gallagher for helpful discussions. We are grateful to the Deutsche Forschungsgemeinschaft (DFG 954/5-1), the Tübingen fortüne Programm (658-1-0, 805-0-0), the EU INCO DEV (contract IC18CT980370) program and the Wilhelm-Sander-Stiftung for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Kube.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mörmann, M., Rieth, H., Hua, T. et al. Mosaics of gene variations in the Interleukin-10 gene promoter affect interleukin-10 production depending on the stimulation used. Genes Immun 5, 246–255 (2004). https://doi.org/10.1038/sj.gene.6364073

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364073

Keywords

This article is cited by

Search

Quick links