Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Full Paper
  • Published:

Genomic organization of classical human low-affinity Fcγ receptor genes

Abstract

The classical low-affinity Fcγ receptor genes (FcγRIIA, B, C and FcγRIIIA, B) are located on chromosome 1q23, a region that shows strong linkage with human systemic lupus erythematosus (SLE) in several genome-wide scans, and family-based association between FcγRIIIA and SLE is now established. High homology among the Fcγ receptor genes, however, has hampered further study of this region. We have used a human bacterial artificial chromosome (BAC) library to determine the order and orientation of these Fcγ receptor genes and have sequenced the very highly homologous 5´ region (including 3.4 kb of the promoter and the 8 kb from exon 1 to exon 3) of the FcγRIIB and FcγRIIC genes to enable study of their unique single nucleotide polymorphisms (SNP). We have utilized these data to characterize a linked set of three coding region SNPs in the FcγRIIC exon 3 (EC1) that includes the stop codon SNP, which provides an important insight into natural killer cell function. Together, these data provide the basis for the study of additional SNPs in FcγR genes in SLE disease susceptibility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Moser KL, Neas BR, Salmon JE et al. Genome scan of human systemic lupus erythematosus: evidence for linkage on chromosome 1q in African-American pedigrees Proc Natl Acad Sci USA 1998 95: 14869–14874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gray-McGuire C, Moser KL, Gaffney PM et al. Genome scan of human systemic lupus erythematosus by regression modeling: evidence of linkage and epistasis at 4p16-15.2 Am J Hum Genet 2000 67: 1460–1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wakeland EK, Liu K, Graham RR et al. Delineating the genetic basis of systemic lupus erythematosus Immunity 2001 15: 397–408

    Article  CAS  PubMed  Google Scholar 

  4. Tsao BP, Cantor RM, Arnett FM . Investigation of SLE-linked regions identified by genome scans: support for 1q23, 16q13 and 20p12 Arthritis Rheum 2000 43 (suppl): 278

    Google Scholar 

  5. Shai R, Quismorio FP, Lily L et al. Genome-wide screen for systemic lupus erythematosus susceptibility genes in multiplex families Hum Mol Genet 1999 8: 639–644

    Article  CAS  PubMed  Google Scholar 

  6. Johaanneson B, Lima G, Alarcon-Riquelme M . Analysis of chromosome 1 for SLE susceptibility loci in a new set of 69 multicase families Am J Hum Genet 2001 69 (suppl): S1970

    Google Scholar 

  7. Kimberly RP, Ralph P . Endocytosis by the mononuclear phagocyte system and autoimmune disease Am J Med 1983 74: 481–493

    Article  CAS  PubMed  Google Scholar 

  8. Kimberly RP, Meryhew NL, Runquist OA . Mononuclear phagocyte function in SLE. I. Bipartite Fc- and complement-dependent dysfunction J Immunol 1986 137: 91–96

    CAS  PubMed  Google Scholar 

  9. Kimberly RP . Immune complexes in the rheumatic diseases Rheum Dis Clin North Am 1987 13: 583–596

    CAS  PubMed  Google Scholar 

  10. Salmon JE, Pricop L . Human receptors for immunoglobulin G: key elements in the pathogenesis of rheumatic disease Arthritis Rheum 2001 44: 739–750

    Article  CAS  PubMed  Google Scholar 

  11. Trikalinos TA, Karassa FB, Ioannidis JPA . Meta-analysis of the association between low-affinity Fc [gamma ] receptor gene polymorphisms and hematologic and autoimmune diseases Blood 2001 98: 1634–1635

    Article  CAS  PubMed  Google Scholar 

  12. Wu J, Edberg JC, Redecha PB et al. A novel polymorphism of FcgammaRIIIa (CD16) alters receptor function and predisposes to autoimmune disease J Clin Invest 1997 100: 1059–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Salmon JE, Millard S, Schachter LA et al. Fc gamma RIIA alleles are heritable risk factors for lupus nephritis in African Americans J Clin Invest 1996 97: 1348–1354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Norsworthy P, Theodoridis E, Botto M et al. Overrepresentation of the Fcgamma receptor type IIA R131/R131 genotype in caucasoid systemic lupus erythematosus patients with autoantibodies to C1q and glomerulonephritis Arthritis Rheum 1999 42: 1828–1832

    Article  CAS  PubMed  Google Scholar 

  15. Manger K, Repp R, Spriewald BM et al. Fcgamma receptor IIa polymorphism in Caucasian patients with systemic lupus erythematosus: association with clinical symptoms Arthritis Rheum 1998 41: 1181–1189

    Article  CAS  PubMed  Google Scholar 

  16. Duits AJ, Bootsma H, Derksen RH et al. Skewed distribution of IgG Fc receptor IIa (CD32) polymorphism is associated with renal disease in systemic lupus erythematosus patients Arthritis Rheum 1995 38: 1832–1836

    Article  CAS  PubMed  Google Scholar 

  17. Dijstelbloem HM, Bijl M, Fijnheer R et al. Fcgamma receptor polymorphisms in systemic lupus erythematosus: association with disease and in vivoclearance of immune complexes Arthritis Rheum 2000 43: 2793–2800

    Article  CAS  PubMed  Google Scholar 

  18. Haseley LA, Wisnieski JJ, Denburg MR et al. Antibodies to C1q in systemic lupus erythematosus: characteristics and relation to Fc gamma RIIA alleles Kidney Int 1997 52: 1375–1380

    Article  CAS  PubMed  Google Scholar 

  19. Edberg JC, Langefeld CD, Wu J et al. Genetic linkage and association of Fc gamma receptor IIIA (CD16A) on chromosome 1q23 with human Systemic Lupus Erythematosus Arthritis Rheum (in press)

  20. Qiu WQ, de Bruin D, Brownstein BH et al. Organization of the human and mouse low-affinity Fc gamma R genes: duplication and recombination Science 1990 248: 732–735

    Article  CAS  PubMed  Google Scholar 

  21. Morel PA, Ernst LK, Metes D . Functional CD32 molecules on human NK cells Leuk Lymphoma 1999 35: 47–56

    Article  CAS  PubMed  Google Scholar 

  22. Metes D, Manciulea M, Pretrusca D et al. Ligand binding specificities and signal transduction pathways of Fc gamma receptor IIc isoforms: the CD32 isoforms expressed by human NK cells Eur J Immunol 1999 29: 2842–2852

    Article  CAS  PubMed  Google Scholar 

  23. Metes D, Ernst LK, Chambers WH et al. Expression of functional CD32 molecules on human NK cells is determined by an allelic polymorphism of the FcgammaRIIC gene Blood 1998 91: 2369–2380

    CAS  PubMed  Google Scholar 

  24. Warmerdam PA, Nabben NM, van de Graaf SA et al. The human low affinity immunoglobulin G Fc receptor IIC gene is a result of an unequal crossover event J Biol Chem 1993 268: 7346–7349

    CAS  PubMed  Google Scholar 

  25. Su Y, Brooks DG, Li L et al. Myelin protein zero gene mutated in Charcot-Marie-tooth type 1B patients Proc Natl Acad Sci USA 1993 90: 10856–10860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Metes D, Galatiuc C, Moldovan I et al. Expression and function of Fc gamma RII on human natural killer cells Nat Immun 1994 13: 289–300

    CAS  PubMed  Google Scholar 

  27. Cassel DL, Keller MA, Surrey S et al. Differential expression of Fc gamma RIIA, Fc gamma RIIB and Fc gamma RIIC in hematopoietic cells: analysis of transcripts Mol Immunol 1993 30: 451–460

    Article  CAS  PubMed  Google Scholar 

  28. Alevy YG, Tucker J, Naziruddin B et al. CD32C (Fc gamma RIIC) mRNA expression and regulation Mol Immunol 1993 30: 775–782

    Article  CAS  PubMed  Google Scholar 

  29. Pricop L, Redecha P, Teillaud JL et al. Differential modulation of stimulatory and inhibitory Fc gamma receptors on human monocytes by Th1 and Th2 cytokines J Immunol 2001 166: 531–537

    Article  CAS  PubMed  Google Scholar 

  30. Metes D, Gambotto AA, Nellis J et al. Identification of the CD32/FcgammaRIIc-Q(13)/STP(13) polymorphism using an allele-specific restriction enzyme digestion assay J Immunol Methods 2001 258: 85–95

    Article  CAS  PubMed  Google Scholar 

  31. Metes D, Morel PA, Nellis J et al. FcgammaRllc 13Q/STP polymorphism influences the antibody-dependent cytotoxicity levels triggered by natural killer cells against pig aortic endothelial cells Transplant Proc 2001 33: 333

    Article  CAS  PubMed  Google Scholar 

  32. Ravetch JV, Lanier LL . Immune inhibitory receptors Science 2000 290: 84–89

    Article  CAS  PubMed  Google Scholar 

  33. Ravetch JV, Bolland S . IgG Fc receptors Annu Rev Immunol 2001 19: 275–290

    Article  CAS  PubMed  Google Scholar 

  34. Takai T, Ono M, Hikida M et al. Augmented humoral and anaphylactic responses in Fc gamma RII-deficient mice Nature 1996 379: 346–349

    Article  CAS  PubMed  Google Scholar 

  35. Bolland S, Ravetch JV . Spontaneous autoimmune disease in Fc(gamma)RIIB-deficient mice results from strain-specific epistasis Immunity 2000 13: 277–285

    Article  CAS  PubMed  Google Scholar 

  36. Nakamura A, Yuasa T, Ujike A et al. Fcgamma receptor IIB-deficient mice develop Goodpasture’s syndrome upon immunization with type IV collagen: a novel murine model for autoimmune glomerular basement membrane disease J Exp Med 2000 191: 899–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Morel L, Blenman KR, Croker BP et al. The major murine systemic lupus erythematosus susceptibility locus, Sle1, is a cluster of functionally related genes Proc Natl Acad Sci USA 2001 98: 1787–1792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Morel L, Wakeland EK . Susceptibility to lupus nephritis in the NZB/W model system Curr Opin Immunol 1998 10: 718–725

    Article  CAS  PubMed  Google Scholar 

  39. Jiang Y, Hirose S, Abe M et al. Polymorphisms in IgG Fc receptor IIB regulatory regions associated with autoimmune susceptibility Immunogenetics 2000 51: 429–435

    Article  CAS  PubMed  Google Scholar 

  40. Jiang Y, Hirose S, Sanokawa-Akakura R et al. Genetically determined aberrant down-regulation of FcgammaRIIB1 in germinal center B cells associated with hyper-IgG and IgG autoantibodies in murine systemic lupus erythematosus Int Immunol 1999 11: 1685–1691

    Article  CAS  PubMed  Google Scholar 

  41. Callanan MB, Le Baccon P, Mossuz P et al. The IgG Fc receptor, FcgammaRIIB, is a target for deregulation by chromosomal translocation in malignant lymphoma Proc Natl Acad Sci USA 2000 97: 309–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. de Haas M, Kleijer M, van Zwieten R et al. Neutrophil Fc gamma RIIIb deficiency, nature, and clinical consequences: a study of 21 individuals from 14 families Blood 1995 86: 2403–2413

    CAS  PubMed  Google Scholar 

  43. Fromont P, Bettaieb A, Skouri H et al. Frequency of the polymorphonuclear neutrophil Fc gamma receptor III deficiency in the French population and its involvement in the development of neonatal alloimmune neutropenia Blood 1992 79: 2131–2134

    CAS  PubMed  Google Scholar 

  44. Huizinga TW, Kuijpers RW, Kleijer M et al. Maternal genomic neutrophil FcRIII deficiency leading to neonatal isoimmune neutropenia Blood 1990 76: 1927–1932

    CAS  PubMed  Google Scholar 

  45. Koene HR, Kleijer M, Roos D et al. Fc gamma RIIIB gene duplication: evidence for presence and expression of three distinct Fc gamma RIIIB genes in NA(1+,2+)SH(+) individuals Blood 1998 91: 673–679

    CAS  PubMed  Google Scholar 

  46. Mechetina LV, Najakshin AM, Volkova OY et al. FCRL, a novel member of the leukocyte Fc receptor family possesses unique structural features Eur J Immunol 2002 32: 87–96

    Article  CAS  PubMed  Google Scholar 

  47. Faccheti F, Cella M, Festa S et al. An unusual Fc receptor-related protein expressed in human centroblasts Proc Natl Acad Sci USA 2002 99: 3776–3781

    Article  Google Scholar 

  48. Tan EM, Cohen AS, Fries JF et al. The 1982 revised criteria for the classification of systemic lupus erythematosus Arthritis Rheum 1982 25: 1271–1277

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Penelope A Morel (Department of Medicine, University of Pittsburgh, Pittsburgh, PA) for kindly providing several reference genomic DNA from FcγRIIC phenotyped donors. This work was supported by the Specialized Center of Research in Genetics of SLE P50 AR45231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R P Kimberly.

Additional information

This work was supported by the SCOR in the Genetics of SLE (P50 A45231)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, K., Wu, J., Edberg, J. et al. Genomic organization of classical human low-affinity Fcγ receptor genes. Genes Immun 3 (Suppl 1), S51–S56 (2002). https://doi.org/10.1038/sj.gene.6363879

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6363879

Keywords

This article is cited by

Search

Quick links