
HOW MACHINE LEARNING AND BIG DATA ARE HELPING CHEMISTS SEARCH  
THE VAST CHEMICAL UNIVERSE FOR BETTER MEDICINES.

I n 2016, the pharmaceutical firm 
Sunovion gave a group of seasoned 
employees an unusual assignment. At the firm’s head-
quarters in Marlborough, Massachusetts, the chemists 

were all asked to play a game to see who could discover the best leads 
for new drugs. On their workstations was a grid of hundreds of chemi-
cal structures, just ten of which were labelled with information on their 
biological effects. The experts had to select other molecules that could 
turn out to be drug candidates, using their hard-earned knowledge of 
chemical structure and biology. Of the 11 players, 10 struggled through 

the task for several hours. But one breezed through in 
milliseconds — because it was an algorithm.

That computer program was the brainchild of Willem van Hoorn, 
head of chemo informatics at Exscientia, a start-up that uses artificial 
intelligence (AI) to design drugs. The firm, based in Dundee, UK, 
wanted to extend a nascent partnership with Sunovion, so the stakes 
were high. “My credibility was on the line,” says van Hoorn. Twenty 
rounds of gameplay later, he tallied up the points. Relief swept over him. 
His algorithm had mastered at least some of the dark arts of chemistry; 
only one drug-hunting expert had beaten the machine. 

THE DRUG-MAKER’S GUIDE TO THE GALAXY 
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Exscientia and Sunovion have continued to work together to discover 
psychiatric drugs ever since. “This competition really helped to get buy-
in from the people who make the chemistry research decisions,” says 
Scott Brown, Sunovion’s director of computational chemistry. 

Exscientia is just one of a growing number of groups in industry and 
academia that are turning to computers to explore the mind-bogglingly 
large chemical universe. Chemists estimate that 1060 compounds with 
drug-like characteristics could be made — that’s more small molecules 
than there are atoms in the Solar System. The hope is that algorithms 
will catalogue, characterize and compare the properties of millions 
of compounds in silico to help researchers 
quickly and affordably find the best drug 
candidates for a target. Proponents argue 
that these strategies could make medicines 
safer, ensure that fewer drugs fail in clinical 
trials and enable the discovery of new classes 
of therapeutics. They could also help to open 
up areas of chemical space left unexplored or 
assumed to be barren. 

But many medicinal chemists remain 
sceptical of the hype, unconvinced that the 
ineffable complexity of chemistry can be 
reduced to mere lines of code. Even advocates 
of AI acknowledge that many attempts have 
fallen flat: computer-generated compounds 
can be riddled with components that are difficult to make, such as 3- or 
4-atom rings, and infested with reactive groups that would set off safety 
alarms. “The execution of some computational approaches can suffer 
badly when researchers just don’t know the field,” says van Hoorn. “The 
compounds they come up with are just laughable.” But he says that an 
expert human touch could yet tame these overzealous digital designers. 
“I think some of these ideas could work if the computer scientists would 
just collaborate with people who actually breathe chemistry.”

SPACE EXPLORATION 
To navigate the chemical universe, it helps to have a map. In 2001, 
chemist Jean-Louis Reymond, at the University of Berne in Switzerland, 
started using computers to chart as much of the massive space as possible. 
Sixteen years on, he has amassed the largest database of small molecules 
in the world, a gigantic virtual collection of 166 billion compounds. The 
database, called GDB-17, includes all the chemically feasible organic 
molecules made of up to 17 atoms — as many as Reymond’s computers 
could cope with. “Just for a computer to compile a list of the compounds 
in the database would now take over 10 hours,” says Reymond.

To make sense of this plethora of possible drug starting points, 
Reymond has come up with a way to organize his chemical universe. 
Taking inspiration from the periodic table, he has grouped compounds 
in a multidimensional space in which neighbouring compounds have 
related properties. Positions are assigned according to 42 characteristics, 
such as how many carbon atoms each compound has. 

For each drug that has made it to market, there are millions of 
compounds that are chemically almost identical to it — just sporting 
an extra hydrogen here or double bond there. And some of these will 
work better than the drug that was approved. Chemists couldn’t possibly 
conceive of all of these variations unaided. “There is no way you can 
get at these isomers using a pen and a piece of paper,” says Reymond.

But Reymond and his team can identify therapeutically promising 
‘near neighbours’ of proven drugs by searching for similarities between 
compounds. By using a particular drug as a starting point, the team 
can comb through all 166 billion compounds in the database for com-
pelling follow-on candidates in just 3 minutes. In a proof-of-principle 
experiment, Reymond started with a known molecule that binds the 
nicotinic acetylcholine receptor, a useful target for disorders involv-
ing the nervous system or muscle function, and compiled a shortlist of 
344 related compounds. The team synthesized three, and found that 
two could activate the receptor potently, and could be useful for treating 

muscular atrophy in ageing1. The approach is like using a geological map 
to work out where to dig for gold, Reymond says. “You need some way 
to choose where you are going to dig,” he says. 

An alternative approach uses computers to pan lots of locations for 
gold without worrying too much about the starting location. In drug-
hunting terms, this means screening vast chemical libraries in silico to 
find small molecules that bind to a given protein. First, researchers have 
to take a snapshot of a protein using X-ray crystallography to determine 
the shape of its binding site. Then, using molecular-docking algorithms, 
computational chemists can chug through compound collections to find 

the best fits for any given site. 
As computing power has exploded, the 

capabilities of these algorithms have improved. 
Chemists at the University of California, 
San Francisco, led by Brian Shoichet, show-
cased the potential of this approach in 2016 
in a search for a new class of painkiller. The 
team screened more than 3 million commer-
cially available compounds to find candidates 
that would selectively activate μ-opioid 
receptor signalling to relieve pain without 
disturbing the closely related β-arrestin sig-
nalling pathway — which is thought to be 
associated with opioid side effects including 
a lowered breathing rate and constipation. 

The researchers quickly whittled down a massive compound library to 
just 23 highly ranked compounds for follow-up2. 

In a test tube, seven of the candidates had the desired activity. Further 
development turned one of these into PZM21, a compound that acts 
on the μ-opioid receptor without activating β-arrestin. The biotechnol-
ogy firm Epiodyne, based in San Francisco, California, and co-founded 
by Shoichet, is now trying to develop a safer painkiller based on the 
findings. Shoichet plans to use the same approach to find compounds 
that modulate other G-protein-coupled receptors (GPCRs), a family of 
proteins that accounts for an estimated 40% of drug targets. 

His team is also running similar experiments with a virtual nebula 
of 100 million compounds that have never been made before but that 
should be easy to synthesize. Industry drug developers are also test-
ing out this approach: the biotech firm Nimbus Therapeutics, based in 
Cambridge, Massachusetts, incorporates into its docking screens virtual 
compounds with characteristics of naturally occurring chemicals that 
usually have to be laboriously sourced from natural environments such 
as soil. The jury is still out on whether these will lead to drugs, but Don 
Nicholson, chief executive of the company, says that for at least one 
drug-design programme, “this is where all our hits are coming from”.

Preliminary results from such virtual screens are shaking one of 
Shoichet’s core assumptions about chemical space: that it’s only worth 
looking in established, drug-rich regions. Well-characterized galaxies 
of molecules are so awash with biologically active compounds that some 
argue it is a waste of time searching elsewhere. “Throughout my career 
I have believed that line of reasoning. It just made sense, even if there 
wasn’t that much evidence to support it,” says Shoichet. But unpublished 
results from his screens of 100 million compounds are stoking his inter-
est in the less-explored regions of chemical space. “I’m starting to think 
that those galaxies are full of gold.” 

IN SILICO INSIGHT
These data-searching approaches are tried and tested, but the computers 
involved can follow only scripted instructions. The latest frontier in com-
putational drug discovery is machine learning, in which algorithms use 
data and experience to teach themselves which compounds bind to which 
targets, finding patterns that are invisible to the human eye. Around a 
dozen firms have sprung up to create drug-hunting algorithms that they 
can test in partnership with large pharmaceutical companies. 

Andrew Hopkins, chief executive of Exscientia, makes a strong case for 
the power of these approaches. It takes on average 4.5 years to discover 

“TOGETHER THE HUMAN 
AND AI CAN OUTPERFORM 

ANY HUMAN, BUT THEY CAN 
ALSO OUTPERFORM ANY 

ALGORITHM.”
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and optimize candidates for preclinical testing3, and chemists often 
synthesize thousands of compounds to get to a promising lead (which 
even then has only a slim chance of making it to market). Exscientia’s 
approach — which uses various algorithms, including the one that 
impressed Sunovion’s research and development executives — may be 
able to reduce this timeline to just one year, and shrink the number of 
compounds that a drug-discovery campaign needs to consider. 

In 2015, Exscientia finished a 12-month campaign for Sumitomo 
Dainippon Pharma, which owns Sunovion and is based in Osaka, 
Japan. The researchers trained their AI tools to find small molecules 
that modulate two GPCRs at the same time, and found they needed 

to synthesize fewer than 400 compounds in order to identify a good 
candidate. The drug that emerged is now moving towards clinical trials 
for psychiatric disease, says Hopkins. Since May, the company has inked 
deals worth hundreds of millions of dollars with Sanofi, based in Paris, 
and Glaxo SmithKline, based in Brentford, UK.

In addition to identifying leads, machine-learning algorithms can also 
help drug developers to decide early on which compounds to kill, says 
Brandon Allgood, chief technology officer of Numerate, an AI drug-
design firm based in San Bruno, California. There’s no point in making 
and testing a compound if it’s going to fail on toxicity or absorption 
testing a few months later, he says. With AI, “it takes just a millisecond 
to rule it in or out”, says Allgood, who trained as a cosmologist before 
he started using AI tools to study the chemical cosmos. Numerate has 
struck two deals with pharmaceutical companies this year, including 
one with Servier, based in Suresnes, France, to put AI-discovered drugs 
through clinical trials for heart failure and arrhythmias.

Industry investment is blossoming, but computational approaches 
still have a lot to prove. Reymond’s collection is gigantic compared with 
other libraries, but it covers the minutest fraction of the chemical uni-
verse (see ‘Chemical cosmos’). Despite the 166 billion compounds in 
his database, he still has further to go in his quest than an astronomer 
who is trying to count all the stars in the night sky but has only managed 
to record one. Screens that rely on matching proteins with drugs need 
accurate crystal structures to yield the best results, and these data take 
time, money and expertise to generate. These methods also struggle to 
cope with proteins in motion and they cannot rank their suggestions 
very well. Machine-learning algorithms, for their part, are only as good 
as the training data sets that they are based on, performing particularly 
poorly when they encounter compounds that look unlike molecules 
they have seen before. What’s more, the programs run as black boxes, 
and cannot indicate why they predict a compound will be a good fit. 

Many computational approaches also have an annoying habit of 
suggesting candidates that are nightmares to cook up in a lab. Chemists 
must then laboriously figure out a recipe for the suggested compound, 
which can take months or more. Even then, there is no guarantee that 
the molecule will work once it is made. Reymond’s approach predicts 
a compound’s activity profile correctly only 5–10% of the time, and 
that means chemists have to toil away on up to 20 compounds to find 
one that acts as expected. “I would say the bottleneck in our explora-
tion of chemical space is the ability to dare to make compounds,” says 
Reymond. To this end, he recently shaved his chemical universe down 
to a shortlist of 10 million molecules that are easy to make, and yet still 
cover a broad range of properties.

Mark Murcko, chief scientific officer at Relay Therapeutics in 
Cambridge, Massachusetts, thinks computational chemists should 
focus less on coming up with new algorithmic strategies, and more on 
improving the data sets they learn from. “One of the best ways that I 
know of to make a predictive model better is to keep feeding it more and 
more, and better and better, data,” he says. Relay and others have bench 
chemists working closely with computational scientists, synthesizing 
compounds proposed by both humans and algorithms and using the 
resulting findings to inform future decisions. 

For Hopkins, such collaborations are key. It took decades for com-
puter scientists to write programs that could compete with chess grand-
masters. Then, in 1997, IBM’s Deep Blue beat Garry Kasparov. But the 
loss did not mark the end of chess. Instead, Kasparov created a dou-
bles version in which each team consists of a human player and an AI. 
“Together the human and AI can outperform any human, but they can 
also outperform any algorithm,” says Hopkins. He wants the same mix 
of data-crunching, creativity and common sense to transform drug dis-
covery. “I believe we are at the Kasparov–Deep Blue moment.” ■

Asher Mullard is a journalist based in Ottawa, Canada.
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