THIS WEEK

EDITORIALS

CHANGES Three new titles join the Nature journal club **p.128**

FAME New chemical elements should honour Primo Levi p.129 FANTASTIC VOYAGE Fossil fins show secrets of swimming squid p.131

Solving the drink problem

The United Kingdom's new guidelines on alcohol consumption are a sound example of evidence-based policymaking.

In his landmark song 'Heroes', David Bowie sang: "I, I'll drink all the time." Alcohol played such a part in Bowie's life that many tributes have taken care to point out that the musician was a non-drinker at the time of his death at the weekend.

Britain has a curious relationship with alcohol, as generations of visitors from abroad have experienced and pondered first-hand on any given evening. Whereas the people of other countries might drink to be sociable or as part of a meal, large numbers of Britons, many have observed, tend to drink alcohol like someone is trying to take it away.

Well, now somebody is — at least according to the reaction of some media commentators to last week's shift in official government guidelines on how much alcohol consumption is advisable. Just in time to reinforce any wavering new-year pledges to cut down on drinking, the UK Chief Medical Officers announced that neither men nor women should consume more than 14 units of alcohol a week — around 7 glasses of wine or 6 pints of average-strength beer. For British men, the amount is substantially less than the previous maximum guideline of 21 units per week. (The new advice is, at this stage, only draft guidance.) The guide amount is also less than comparable advice issued by many other nations.

Predictably, most dissent focused on the political argument that the government has no business telling people how to live their lives, and, presumably, speed their own deaths. Right-wing UK politician Nigel Farage led the (only just tongue-in-cheek) calls for those outraged by the latest example of "nanny state" politics to protest by heading immediately to the pub.

Disagreement with the scientific and medical basis for the new guidelines was more half-hearted. Most people in Britain seem to grudgingly accept that drinking too much is a bad thing, just as they have for a series of antisocial and unhealthy behaviours targeted in recent times — driving without seatbelts, supermarkets placing racks of chocolate at tills at child-friendly heights, and smoking, for instance. (This is a nation, remember, that felt it had to point out in official guidance as recently as 1984 that 56 drinks in a single week was "too much".)

In fact, despite some attempts to whip up outrage, there are signs that the British government is pushing against an open door in its attempts to get people to drink less. Alcohol consumption is reportedly falling, the number of people who abstain entirely is increasing, and the plague of young binge drinkers is in decline.

The statement that there is no 'safe' level of alcohol consumption is a solid one. Those who wish to dispute this should first read the evidence produced by the guidelines development group for the Chief Medical Officers, which includes modelling to balance risks and benefits (see go.nature.com/aauzdp). It shows that the past 20 years have produced a wealth of new evidence strongly linking alcohol use to cancer risk. And — contrary to the legion of newspaper stories — the minor health benefits of drinking are realized only by women over the age of 55, and then only at very low consumption levels. Red wine won't save you

from occasionally having to take a bit of exercise.

Decades hence, society may look back at today's acceptance and even celebration of alcohol and shake its collective head in the same way that we now view the acceptance of tobacco smoking, or the use of opium as a tonic.

Having an evidence-based recommendation is one thing. Actually changing behaviour is quite another. Millions of British men and

"The scientists whose work fed into the new guidelines should be proud." women admit to routinely drinking more than they should. A sizeable fraction of those still drink more than 50 units a week. And the UK experts also pointed out the (not so) sobering fact that behavioural experts "found little evidence regarding the impact of any guidelines in changing health behaviours".

Still, it is a starting point, and the scientists

whose work fed into the new guidelines should be proud. Converting solid evidence into scientifically grounded policy is something that everyone can raise a glass to. And more people now have the evidence to decide for themselves what type of drink should go into it.

A secure future

Research advances mean that the time is ripe to ratify the ban on testing nuclear weapons.

his year marks the twentieth anniversary of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) agreement, so the timing of the latest nuclear blast from North Korea is pertinent. The country's continued testing — this is its fourth test since 2006 — puts it on a path to developing miniaturized warheads that could be placed on missiles, risking an arms race in the region and increased global instability.

North Korea is one reason why the CTBT is not yet in force. The dictatorship is one of eight nuclear-capable nations that have yet to ratify the agreement, along with China, Egypt, India, Iran, Israel, Pakistan and the United States.

Science may seem to have little leverage in the volatile mixture of global power struggles and regional stand-offs, but it has been successful before. A major reason that so many countries were willing to sign up to the treaty in 1996 was the diligent research by a group of international scientists — known as the Group of Scientific Experts — established 20 years earlier in 1976. It had drawn up a credible road map of what technologies would be needed to verify that no country could cheat on its treaty obligations by carrying out undetected tests, thus giving them a military edge on those who abided by the rules.

Scientists can help again now — not least by explaining to politicians that the United States' principal technical objections to ratification have been overcome. In 1999, the US Senate rejected then-president Bill Clinton's push for ratification by a 51–48 vote, with opponents unconvinced that the technology was ripe either to detect cheaters, or to ensure the reliability and safety of the vast existing US stockpile of nuclear weapons without explosive testing.

Given the intensity of partisan politics in Washington DC today, hopes of any renewed effort by the United States to ratify the CTBT might seem fanciful. But at a symposium organized by the US Department of Energy in October 2015, US Secretary of State John Kerry called for just that, saying that the administration was determined to "reopen and re-energize the conversation about the treaty".

Backing the case for ratification at the symposium were leading government scientists, such as US energy secretary Ernest Moniz who had a key role in brokering the deal between the West and Iran over that country's nuclear programme last July — and the heads of US nuclear-weapons labs at the Lawrence Livermore, Los Alamos and Sandia National Laboratories.

Kerry and the scientists pointed out that advances in research meant that the Senate's concerns from 1999 are no longer relevant. The detection within minutes of last week's nuclear test by North Korea once again demonstrates that the International Monitoring System of the Vienna-based Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization is up to the job it was designed to do. The US Stockpile Stewardship Program for its nuclear weapons, established in 1995, has also shown that advances in computer simulations and other technologies can assure the safety and reliability of its stockpile without any nuclear testing.

Although the CTBT has yet to enter into force, it has set an international standard. With the exception of North Korea, all countries have refrained from nuclear testing since 1998, when India and Pakistan each carried out two nuclear tests.

The United States has an opportunity to show leadership. By ratifying the CTBT, it would put huge pressure on China, India, Pakistan and other countries to do likewise. Iran, having scored a major diplomatic success with its nuclear deal with six world powers, is also in a strong position to support ratification. That would leave the signature of North Korea, probably the most recalcitrant non-signatory, for the CTBT to be able to enter into force. But as the Iran deal and the Paris climate negotiations show, diplomacy can prevail in the most difficult circumstances.

The CTBT alone will not solve all the complex issues of possession of nuclear weapons — in particular the disingenuous refusal of nuclear-weapons states to respect their commitment to the 1970 Nuclear Non-Proliferation Treaty to make serious efforts to disarm. But ratification of the CTBT would be a crowning achievement for science-based evidence and diplomacy in nuclear disarmament. Scientists played a key part in underpinning the nuclear deal with Iran; they now need to help to convince politicians that the CTBT is another deal in the best interests of international security.

ANNOUNCEMENT

Three new Nature journals

The traditional stamping grounds of *Nature* and the Nature journals have been the fundamental sciences — the physical, chemical, biological, Earth and environmental sciences. Three journals launched this week restate our editorial and publishing commitment to these territories. And one of them also delves into other disciplines, especially the social sciences, in tackling some of the 'grand challenges' facing society.

Nature Energy is the journal with the broadest scope. Like Nature Climate Change and Nature Plants, it includes social science and policy research: the first issue features papers on 'Policy trade-offs between climate mitigation and clean cook-stove access in South Asia' and 'Impacts of a 32-billion-gallon bioenergy landscape on land and fossil fuel use in the US'. But the journal is also committed to the natural sciences — and indeed to any research that assists humankind in getting to grips with the challenges of energy generation, storage and distribution. In short, Nature Energy will attend to how science, technologies and people can deliver, and are affected by, any and all energy systems.

Like *Nature* and all other Nature research and reviews journals, *Nature Energy*'s choice of what to publish lies entirely in the hands of its in-house editors, who are supported by external peer reviewers. Everyone on the editorial team (which includes a social scientist) sits in the same office and is able to work closely together in assessing submissions. This is of particular value when dealing with multidisciplinary submissions — a challenge that the journal sees as one of its principal missions.

Materials research is a key component of the energy-research landscape. It also contributes fundamental insights into materials themselves and provides contexts in which materials can be applied. High time, our editors and publishers concluded, that a Nature journal should survey progress across all these fronts: hence this week's launch of *Nature Reviews Materials*. Like the other two journals, it is an online-only subscription journal.

The launch issue includes reviews that outline the computational design of energy materials, the latest advances in photovoltaic devices, the surface properties of superhydrophobic and icephobic materials, the synthesis of carbon nanostructures and the design of pro-angiogenic materials, which are valuable in combating cardiovascular disease. It also focuses on sustainable materials, immunotherapy materials and the history of nanotechnology and the electronics industry. *Nature Reviews Materials* aims to cover the making, measuring, modelling and manufacturing of materials — looking at materials all the way from laboratory discovery to their use in functional devices. And in the coming months, the journal will analyse the impact that materials research can make in the field of medicine and on our environment, ensuring a healthier and more sustainable future.

The third journal is *Nature Microbiology*. As the most abundant living entities on our planet, microorganisms are fundamental to every facet of life on Earth. *Nature Microbiology* is interested in all aspects of microorganisms, be it their evolution, physiology and cell biology; their interactions with each other, a host or an environment; or their societal significance. The editors of *Nature Microbiology* are keen for the journal to be inclusive of all types of microorganism, whether bacterial, viral, archaeal or eukaryotic in nature. Accordingly, the launch issue features articles on a diverse array of microorganisms and topics, including the speciation of wild yeasts by hybridization, the global distribution of and disease burden caused by a bacterium and the identification of a virus that borrows its capsid coat from another virus.

Increasingly, researchers, their funders — both public and private — and their institutions recognize that great research needs to be pursued in both fundamental and societally useful domains. Such research needs to be inclusive, in disciplinary terms, and to aim for the highest standards of robustness. It is our hope that the Nature group of journals can support these ambitions, and notably so in the launches this week.