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Imputing missing genotypic data of single-nucleotide
polymorphisms using neural networks
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With advances in high-throughput single-nucleotide polymorphism (SNP) genotyping, the amount of
genotype data available for genetic studies is steadily increasing, and with it comes new abilities to study
multigene interactions as well as to develop higher dimensional genetic models that more closely
represent the polygenic nature of common disease risk. The combined impact of even small amounts of
missing data on a multi-SNP analysis may be considerable. In this study, we present a neural network
method for imputing missing SNP genotype data. We compared its imputation accuracy with fastPHASE
and an expectation–maximization algorithm implemented in HelixTree. In a simulation data set of 1000
SNPs and 1000 subjects, 1, 5 and 10% of genotypes were randomly masked. Four levels of linkage
disequilibrium (LD), LD R2o0.2, R2o0.5, R2o0.8 and no LD threshold, were examined to evaluate the
impact of LD on imputation accuracy. All three methods are capable of imputing most missing genotypes
accurately (accuracy 486%). The neural network method accurately predicted 92.0–95.9% of the missing
genotypes. In a real data set comparison with 419 subjects and 126 SNPs from chromosome 2, the neural
network method achieves the highest imputation accuracies 483.1% with missing rate from 1 to 5%.
Using 90 HapMap subjects with 1962 SNPs, fastPHASE had the highest accuracy (B97%) while the other
two methods had 495% accuracy. These results indicate that the neural network model is an accurate and
convenient tool, requiring minimal parameter tuning for SNP data recovery, and provides a valuable
alternative to usual complete-case analysis.
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Introduction
The availability of high-throughput single-nucleotide

polymorphism (SNP) genotyping platforms has resulted

in an exponential increase of measured genotypes. There-

fore, genetic epidemiological studies are faced with com-

plex issues of genotyping error and missing data. Methods

to assess genotyping error in linkage and family-based

association studies, as well as their impact on statistical

inferences, has been the focus of many studies.1–3 The

study of missing genotype data, on the other hand, has not

been an equally active area of research. For genotyping

data, the issue of missing data and its imputation is

perhaps a more contentious issue than genotyping error

issues since it implies creating genotype data, which are

often considered too individualistic to be imputed. Many

software packages used in statistical analysis to identify

genetic predictors of disease require a complete data

subsample for the estimation of model parameters. There

is a large literature base to suggest that not imputing

missing data may have serious consequences for statistical

validity, and that it affects the estimability of statistical

parameters that are intended to be generalized to the larger

population of inference.4–6 Most recently, a study suggests
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that imputation generally improves efficiency over the

standard practice of ignoring missing data in genetic

association studies of common human diseases.7 The

compounded effects of missing data are also likely to

contribute to wide variability in reported association study

results and ultimately contribute to their lack of replic-

ability.

In this paper, we present a neural network method with

variable and model selection strategies for imputing

missing SNP genotype data. To assess its strengths and

limitations, we compared the neural network to two other

imputation methods that use haplotype-phasing algo-

rithms. Knowing that most genetic variations such as SNPs

are moderately dependent on each other, we can utilize

the predictive model to illustrate the dependencies to

impute the missing genotypic data.8,9 The goal of imputing

missing SNP genotypes focuses on accurately predicting

individual missing values. Because of the amount of

correlations between SNPs, especially high-density SNPs,

it is feasible to accurately predict missing SNP genotypes.9

Feed-forward neural networks (FFNNs) have received

considerable attention due to their successful use in a wide

variety of statistical applications, including regression and

classification problems. A general description of the use

of FFNNs can be found in Bishop.10 Ripley11 provides

examples and applications related to pattern recognition

and gives a detailed account of fitting and prediction

procedures. The Bayesian approach to fitting FFNNs has

gained much acceptance.12,13 In this study, we use an FFNN

model and a Bayesian approach to model selection to

classify subjects into one of three genotype categories for

each SNP based on the predictive ability of the genotypes

of other SNPs.

Model selection is one of the most important considera-

tions when fitting FFNNs. In addition to the complexity

of finding the best predictor variables, as in regression

problems, FFNN also requires consideration of determining

the number of hidden nodes. Including too many

predictors, hidden layers or hidden nodes can lead to

overfitting, and thus poor classification performance.

Including unrelated or too few predictor variables can also

result in poor predictive performance. The Bayesian

Information Criterion (BIC)14 has been shown to be an

approximation to the log of a Bayes factor15 and penalizes

the likelihood based on the number of parameters in the

model and the sample size. In this study, we used an FFNN

model with a single hidden layer and a single hidden node

to model each SNP variable in turn as the response. A

neural network with a single hidden layer and a single

hidden node is equivalent to a logistic regression model.

Although, in this application, the simplest neural network

model is capable of predicting missing SNP genotypes

accurately, a more complicated neural network model is

always available using the same framework to potentially

improve performance under different situations. The

predictor variables are chosen from the best candidates

among the other SNP variables based on the BIC.

Missing SNP genotypes can also be imputed by the

phasing algorithms that estimate the haplotype phase from

genotype data using population genetic models. Several

studies have implied that such phasing algorithms are

capable of imputing the missing SNP genotypes as well as

imputing haplotypes.16,17 The PHASE (v2.1) algorithm is

reported to be the most accurate phasing method16 but is

known to be very computationally intensive and slow.

Recently a new algorithm, fastPHASE,17 was developed to

estimate haplotypes and can impute haplotypes and the

missing SNP data at a much faster rate in samples of

unrelated individuals from natural populations. As a

comparison, we tested another linkage disequilibrium

(LD)s-based algorithm which is an extension of the expecta-

tion–maximization (EM) algorithm which has been imple-

mented in the genetic association software HelixTree.18

Materials and methods
Data

To test the SNP prediction accuracy, we used complete

simulated SNP data sets generated by the ms program.19

We implemented a standard coalescent model of 1000

SNPs across a 6-Mbp region, which has the same density as

the Affymetrix human 500K SNP genotyping array, assum-

ing an effective population size of 10 000 individuals with

recombination and mutation rates both equal to 10�8 per

generation and per bp. Three other tagSNP data sets with

LD R2o0.8 (680 tagSNPs), LD R2o0.5 (552 tagSNPs) and

LD R2o0.2 (288 tagSNPs)20 were produced as subsets of

the 1000 SNP data to determine the LD effects on the

imputation accuracy. There is no minor allele frequency

cutoff used to generate these data sets. From each complete

set of SNP genotypes, 1, 5 and 10% of data were randomly

masked five times to estimate the imputation accuracy.

Each of the FFNN, fastPHASE and EM methods was applied

to the 60 data sets (five replicates of three missing rates and

the four LD levels) to impute the missing genotypes. The

imputed genotypes were then compared to the actual

genotypes to estimate the SNP imputation accuracy.

To compare the missing SNP genotype imputation

methods in a dense real data set, we downloaded SNP

genotypes in a 6-Mb region on chromosome 22 measured

on 90 HapMap CEPH participants. After removing mono-

morphic SNPs and SNPs with missing rate more than 0.1,

we obtained a complete genotype data set with 1962 SNPs

and 90 individuals. To estimate the imputation accuracy 1,

5 and 10% of data were randomly masked five times. Each

of the FFNN, fastPHASE and EM methods was applied to

the five data sets (five replicates of three missing rates) to

impute the missing genotypes. The imputed genotypes

were then compared to the actual genotypes (masked) to

estimate the SNP imputation accuracy using means and SD

from the five replicate data set.
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As part of the Genetic Epidemiology Network of Arterio-

pathy (GENOA) study, 126 chromosome 2 SNPs (on 25

candidate genes) spanning 42.5Mbp were measured on

1458 subjects collected in sibships.21,22 In this study, we

used a subset of 126 SNPs measured on 419 unrelated

subjects as a real data example. Overall, 0.92% of the SNP

data were missing. The number of missing observations per

SNP ranges from 0 to 13 out of 419 subjects. Additional 1, 2

and 5% of SNP genotypes were randomly masked five times

to create samples for imputation method comparison in a

real data set. The true genotypes were compared to the

imputed genotypes from the three methods, FFNN,

fastPHASE and HelixTree EM, to calculate the imputation

accuracy.

Neural network model

FFNNs are often developed in a nonparametric regression

context with normal error terms. They have been shown

to be universal approximators in the sense that they can

approximate any continuous function with any specified

degree of accuracy by increasing the number of hidden

nodes.23,24 To extend the model to classification, each

categorical response is modeled as a multinomial random

variable. This model is often referred to as the softmax

model in the computer science literature.25

A large enough network must be used to fit the data well,

but small enough to avoid overfitting and poor predictive

performance. Therefore, a single hidden layer was chosen

for the FFNN model which is the simplest but capable of

predicting missing genotypes in the study. For the same

reason, for each SNP variable modeled as the response, we

chose five SNP predictors with the smallest P-values in a

series of 3�3 contingency tables based on the w2-test of

independence. Among those five SNPs, we fit FFNN models

to all possible combinations taken one at a time, two at a

time, three at a time and so on, resulting in a total of 31

models. For each model, a data set with complete cases was

constructed by removing the missing values. Of those 31

models, the BIC14 was used to select a final model. The

BIC has been shown to be an approximation to the log of

the Bayes factor,15 and penalizes the likelihood based on

the number of parameters in the model and the sample

size.

In a sense, FFNNs can be regarded as a nonlinear

prediction model. Consider an FFNN with one hidden

layer and M hidden nodes. Let yi¼ (yi1, yi2, yi3) be the

multinomial response for subject i, i¼1,y,n, where yij¼1

when a subject belongs to category j, j¼1,2,3, and yij¼0

otherwise. Denote by pij the true underlying probability

P(yij¼ 1,|pij), and by pij, the fitted value under the model.

The likelihood is

f ðyjpÞ ¼
Yn

i¼1

Y3

j¼1

pyijij

and the fitted probabilities are found from the neural

network by

p̂ij ¼
expðẐijÞ

P3

r¼1

expðẐijÞ

Zij ¼ b0j þ
XM

m¼1

bmj CðxTi gmÞ

CðoÞ ¼ eo

1þ eo

where xTi ¼ (1, xi1, xi2, y,xip) are the explanatory variables,

and bT¼ (b01, b02, b03, y, bM3) and gTM¼ (gM0, gM1, gM2, y,

gMp) are called weight parameters. For this model with p

predictor variables and M hidden nodes there are

3þM(2pþ 4) weight parameters. The function C is often

referred to as the activation function and can be any

smooth sigmoidal function. The logistic activation func-

tion is commonly used and is the one we chose for this

application. To improve the imputation accuracy for the

poorly predicted SNPs, we considered more complex

models by attempting to increase the number of hidden

nodes (M¼ 1–7) using the R software package which uses a

quasi-Newton method of optimization known as the

Broyden, Fletcher, Goldfarb and Shanno (BFGS) algorithm

(for details, see Venables and Ripley26). These attempts did

not significantly improve classification performance. As

a result, all FFNN models have one (M¼1) hidden node.

Since the SNPs are categorical variables with three levels,

each predictor was coded as two indicator variables and

each model required 2pþ7 weight parameters. Thus, a

model with three predictor SNPs required estimation of 13

parameters.

The BIC that we used for model selection is a modifica-

tion of the likelihood ratio statistic (LRS). It is well known

that for large samples the LRS rejects good models in

favor of models with more parameters.27 To take this into

account the BIC penalizes models based on large sample

sizes that have large numbers of parameters. The BIC can

be calculated using

BIC ¼ L� p

2
logn

where L is the log-likelihood evaluated at the parameter

estimates, p is the number of parameters in the model and

n is the sample size.

Once a final set of predictors was selected for a particular

SNP using BIC, a complete subset including all predictor

SNPs and the outcome SNP was generated by removing the

missing values to test the accuracy of FFNN model. Note

that the number of cases in each complete data set varies

due to different patterns of missing data on the variables

included in each model. In some cases, the subject carries

missing values for both predictors and outcome. In that

case, the missing genotype cannot be imputed. Such

situations impair the recovery rate, especially for data sets

SNP imputation using neural networks
YV Sun and SLR Kardia

489

European Journal of Human Genetics



with higher missing data rates. To address this issue and

improve the recovery rate, we sequentially applied the

FFNN algorithm multiple times for data sets with higher

missing rates. Because the input data are different for each

imputation round, the model selection process can pick

separate models with an alternative set of predictors that

have different missing data patterns. As a result, more

missing genotypes can be recovered using additional

rounds.

An R program was implemented for neural network

classification of SNP genotypes and for prediction of

missing SNP genotypes. First, for each SNP variable the

program selects the five most associated SNPs based on a

w2-test of association. Then it fits FFNNs (nnet library in R)

to all SNP variables using up to five predictor SNPs based on

the BIC criterion for model selection. For each FFNN

model, a complete subset was created using the selected

predictor(s). Finally, the missing genotypes are imputed by

using the model and the values of the predictors from the

observed data. Multiple rounds of the imputation are done

by using the imputed data from the last round as the input

data.

Additional SNP imputation methods

We intended to apply PHASE (v2.1) in this study because of

its high reported imputation accuracy. However, it is not

computationally practical to process the simulation data

sets under our current setup. For one of the simulation data

sets (1000 SNPs and 1000 subjects), it took about 2 weeks to

calculate approximately 20% of the task. Therefore, we

only compared fastPHASE, which has similar imputation

accuracy as PHASE (v2.1).17 To impute the missing SNP

genotypes with fastPHASE, the simulated data sets, Hap-

Map chromosome 22 data set and the GENOA chromosome

2 data were ordered by their genomic locations and were

transformed to the compatible file format. Using a built-in

utility of fastPHASE, the cluster number was optimally

selected. The iteration number of 50 was used to achieve

optimal results.

Using an extension of the EM algorithm implemented in

HelixTree (Golden Helix Inc., Bozeman, MT, USA), we

inferred missing values from neighboring markers.18

Different parameter settings, such as the size of marker

window, the number of highest LD markers and the

number of EM iterations, were examined. The best results

were obtained when the 20 SNPs with the highest LD R2

value are selected within a window of 30 markers centered

around the marker of interest. For this paper, missing

values were computed through the 20-marker haplotypes

with the EM convergence tolerance of 0.001 and the

maximum EM iteration number of 50.

Results
For each SNP in the simulation data, we fit one FFNN

model to the training data and then used the fitted values

to classify test subjects using the R nnet function. To

improve the missing data recovery rate, multiple rounds of

FFNNs were applied sequentially. Table 1 summarizes the

imputation accuracy for missing rates of 1, 5 and 10% at

four levels of LD. Two, three and four rounds of FFNNs

(data with higher missing rates need more rounds of

imputation) were applied for missing rate of 1, 5 and 10%,

respectively, to obtain the optimal recovery rate. For all LD

levels we have tested, the multiple-run strategy improves

the imputation accuracy. After running five rounds of

imputation, we found that although multiple rounds of

FFNN prediction increase the accuracy, especially for

higher missing rate data sets, the accuracies peak after a

limited number of rounds. At missing rate of 1, 5 and 10%,

the necessary rounds are 2, 3 and 4, respectively, to obtain

the best results. For each combination of missing rate and

LD level, we created five missing data sets to compare the

three methods. In the data set without LD threshold, the

mean accuracies are 95.9, 94.7 and 94.7% at missing rate of

1, 5 and 10%, respectively. For SNPs with LD R2o0.8, the

mean accuracies drop to 93.1, 92.9 and 92.1% at 1, 5 and

10% missing rate, respectively. For SNPs with LD R2o0.5,

about 92.5, 92.7 and 91.6% of missing data can be

accurately recovered with 1, 5 and 10% missingness,

respectively. For SNPs with LD R2o0.2, the mean accura-

cies of 93.2, 92.3 and 92.0% are obtained for data with

missing rate of 1, 5 and 10%, respectively. Overall, the

lower level of the inter-SNP dependency (indicated by

Table 1 Running multiple rounds of FFNN improves the imputation accuracy at three missing rates and four LD levels with
the simulation data set

1% missing 5% missing 10% missing

Round 1 (%) Round 2 (%) Round 1 (%) Round 2 (%) Round 3 (%) Round 1 (%) Round 2 (%) Round 3 (%) Round 4 (%)

All SNP 94.6 95.9 86.4 92.4 94.7 77.0 87.6 92.6 94.7
LD R2o0.8 92.3 93.1 81.8 88.3 92.9 69.6 80.6 87.8 92.1
LD R2o0.5 91.2 92.5 80.6 87.2 92.7 68.4 79.5 86.6 91.6
LD R2o0.2 91.4 93.2 81.3 88.3 92.3 69.5 81.4 89.1 92.0

FFNN, feed-forward neural network; LD, linkage disequilibrium; SNP, single-nucleotide polymorphism.
Bold values indicate the final values for FFNN accuracy.
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LD R2) mildly decreases the imputation accuracy. However,

when LD R2o0.5, the further reduction of the LD does not

have obvious impact on the imputation accuracy. The

results in Table 1 also indicate that the FFNN method has

relative stable performance at missing rates from 1 to 10%

but requires more computation rounds for a data set with a

higher missing rate to reach the best imputation accuracy.

The results in Figure 1 provide the comparison of the

imputation accuracy (mean and SD) of FFNN, fastPHASE

and the HelixTree EM methods in the five simulated

data sets. After increasing the window size and the EM

iterations, the EM algorithm achieves the best accuracies at

the three missing data rates across the four LD levels.

Its imputation accuracies are relatively stable when

Figure 1 The comparison of mean imputation accuracy in various linkage disequilibrium (LD) structure at missing rate of 1% (a), 5% (b) and 10%
(c) with simulated data. The mean imputation accuracies of FFNN (E), EM (’) and fastPHASE (m) methods are presented with four LD levels at each
missing rate. The error bars indicate the SD of the imputation accuracies based on five samples.
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LD R240.5 and decrease when LD R2o0.2. Similar to the

FFNN method, the missing rate does not have clear impact

on the recovery rate for the four tested LD levels. The

fastPHASE program provides very good but relatively less

accurate SNP imputation results. The fastPHASE method

also shares the same trend that low LD correlation

decreases imputation accuracy. In Figure 1, the LD impact

of imputation accuracy is summarized at missing rate of

1% (Figure 1a), 5% (Figure 1b) and 10% (Figure 1c).

Figure 2a summarizes the imputation accuracy for 1, 5

and 10% missing data of HapMap chromosome 22 data.

For each missing rate, five samples were generated to

estimate the SD. Three rounds of FFNN were applied to

obtain the optimal recovery rate. The mean accuracies for

FFNN method are 96.2, 95.4 and 95.1% at missing rate of 1,

5 and 10%, respectively. At the same level of missing rate,

the mean accuracies of the HelixTree EM and fastPHASE

methods are 95.7, 97.4% (1% missing); 95.4, 97.2% (5%

missing) and 95.2, 96.9% (10% missing). The HelixTree EM

and fastPHASE methods also have slightly larger SD than

the FFNN method. In this HapMap data comparison,

fastPHASE has the highest imputation accuracy and all

three methods have very high mean accuracy above 95%.

Figure 2b summarizes the imputation accuracy for 1, 2

and 5% additional missing data of GENOA chromosome 2

data. For each missing rate, five samples were generated to

estimate the SD. Three rounds of FFNN were applied to

obtain the optimal recovery rate. Same as the simulation

results, the accuracies maximize after a limited number of

rounds of FFNN imputation procedure. The mean accura-

cies for FFNN method are 86.8, 86.5 and 83.1% at missing

rate of 1, 2 and 5%, respectively. At the same level of

missing rate, the mean accuracies of the HelixTree EM and

fastPHASE methods are 73.6, 82.1% (1% missing); 73.0,

81.6% (2% missing) and 72.9, 80.7% (5% missing). The

HelixTree EM and fastPHASE methods also have slightly

larger SD than the FFNN method. In this real data

comparison, the FFNN method has superior performance

over the other two methods.

To identify the accurate imputation coverage across the

three methods, the imputed genotypes from all three

methods are compared to each other as well as the actual

genotypes. As an example, the overlapping results of the

data set with 1% missing and no LD threshold are

summarized in Figure 3. Out of 10 000 missing genotypes

Figure 2 The comparison of mean imputation accuracy on
HapMap chromosome 19 data and GENOA chromosome 2 data with
additional missingness of 1, 2 and 5%. The mean imputation
accuracies of FFNN (E), EM (’) and fastPHASE (m) methods are
calculated by comparing the imputed genotypes to the randomly
masked true genotypes of five samples. The FFNN results are based on
the imputed genotypes by running three rounds of the FFNN
algorithm. The error bars indicate the SD of the imputation accuracies
based on five samples. (a) HapMap chromosome 22 data; (b) GENOA
chromosome 2 data.

Figure 3 The imputation accuracy of the overlapped genotype
inference from the FFNN, EM and fastPHASE methods. As an example,
the overlap of the imputed genotypes of the three methods is
presented in a Venn diagram at missing rate of 1% for all SNPs without
LD restriction. The numbers of imputed genotypes are listed in all
overlapping regions. The imputation accuracies for these regions are
calculated by comparing to the true genotypes and are listed in the
parenthesis.
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8702 are imputed identically by all the three methods with

accuracy of 99.1%. Among 899 missing genotypes, which

are imputed by the FFNN and the EM methods, but not by

the fastPHASE method, 95.9% of them are correct. The

accuracy of 229 missing genotypes, which are consistently

imputed by EM and fastPHASE methods, but not by the

FFNN method, is 85.6%. The accuracy of 138 missing

genotypes, which are consistently imputed by FFNN and

fastPHASE method, but not by EM method, is 31.1%.

Among the 261 FFNN imputed genotypes, which are

imputed differently from either of the EM or fastPHASE

method, the accuracy rate is 14.2%. For the EM method,

the nonoverlapped SNP imputation has accuracy of 70.6%

among total 170 genotypes. At last, the 931 genotypes

imputed only by fastPHASE method have imputation

accuracy of only 3.3%. We also observed that using two

methods together to identify commonly imputed geno-

types has better accuracy than using each method alone.

For all 9601 missing genotypes consistently inferred by

both FFNN and EM methods, the imputation accuracy is

98.8%, which is higher than using either method alone,

95.7% for the FFNN method and 98.0% for the EM

method. For the 8931 missing genotypes consistently

inferred by both EM and fastPHASE methods, the imputa-

tion accuracy is 98.8%, which is higher than using either

method alone, 98.0% for the EM method and 89.0% for

the fastPHASE method. Similarly, among the 8840

genotypes consistently inferred by both FFNN and fast-

PHASE methods, the imputation accuracy is 98.0%, which

is higher than using FFNN or fastPHASE methods alone.

Discussion
The results obtained from fitting any statistical model can

be seriously affected by patterns of missing data, and steps

must be taken to formulate an effective strategy for dealing

with this situation, especially in multigenic studies where

missing data issues are compounded by different levels of

missing SNP data.

To avoid losing valuable information and decreasing the

power of a study by selecting a complete subset (ie, no

missing data) of data, we demonstrate that missing SNP

genotype data can be imputed with high reliability using

the naturally occurring correlations between SNP fre-

quency distributions due to LD. As with any data imputa-

tion method it is important to first consider the amount of

missing data in the data set on a variable-by-variable basis.

Our procedures worked successfully (mean accurate classi-

fication rates 492%) in cases where missing data ranged

between 1 and 10%. In cases where there are substantially

more missing data, there should be some caution in using

data imputation methods without rigorous investigation

into the amount of genotyping error it may introduce. The

impact of genotyping error on linkage and association has

been investigated by several researchers,28–30 and we

suggest applying an upper bound misclassification error

rate for an imputation procedure of 10–15% to minimize

the introduction of genotyping errors into data sets. For a

typical SNP that is missing approximately 5% of the data, a

10% misclassification rate will result in recovering 90% of

the data without error and will introduce approximately

0.5–0.75% new error into the whole data set, which is

equivalent to most accepted genotyping error rates. Of

course, this is assuming that the original genotyping data

are collected without error, which is not true. However,

efforts to reduce genotyping error in high-throughput

laboratories is increasing by applying quality control

standards in genotyping laboratories, doing diagnostic

statistical tests such as Hardy–Weinberg equilibrium tests,

using available family data to test for Mendelian consis-

tency, and applying good epidemiological practices of

submitting blind duplicates to actually estimate error rates.

With even low levels of inter-SNP correlation, classifica-

tion tools such as neural networks can be utilized to

identify these correlations to impute missing genotypic

data. In our study, the FFNN had the best overall

imputation accuracy on the real data from the chromo-

some 2 fine mapping project. Other alternative tools for

missing genotype imputation are the phasing algorithms,

which impute the unknown haplotypes for each subject,

and the missing genotypes can be inferred by combining

the imputed haplotypes. Comparing the fastPHASE

algorithm, which is reported as one of the most accurate

phasing algorithms,17 and the EM phasing algorithm

implemented in HelixTree, we observed that the fastPHASE

algorithm had the best imputation accuracy using HapMap

data set with 90 subjects and 1962 SNPs, which confirmed

the previous report,17 and the EM algorithm had the best

overall imputation accuracy on the simulated data sets.

The FFNN method was the best imputation strategy on the

real data set, and was the second best performer in both the

HapMap data and the simulation data. It should be noted

that the majority of the imputed genotypes were identical

from the three methods. In all of the three data sets, the

genotypes are missing at complete random. The different

performance probably relies on the different structure of

inter-SNP dependency. The real data include small number

of SNPs in a relative large region. Therefore, the pairwise

LD-based phasing algorithms may not be able to capture

the multi-SNP dependency, which could be the type of

dependency critical in this real data. The FFNN model can

take advantage of both pairwise and multi-SNP dependencies

to predict missing genotypes. However, in the simulated

data, even for data with LD R2o0.2, it seems that the

pairwise SNP correlations are sufficient to predict the

missing genotypes accurately. Additionally, as a variable

selection criterion, the BIC seems to perform well in

developing parsimonious predictive models. We found

that for some SNPs the FFNN classification rates were
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excellent with only one or two predictors. In other cases

additional predictors (up to five total SNPs) were added to

the model in an attempt to balance goodness of fit with

parsimony.

In the current FFNNmethod, we used the w2-test to select

the top five SNPs correlated with the predicted SNP to build

the FFNN model. It is possible that the five best predictors

selected by pairwise correlation are not the most informa-

tive predictors carrying the maximal predictive power as a

group because of potential higher dimensional interac-

tions. An improved method of selecting the most informa-

tive SNPs will increase the imputation accuracy of the

FFNN method. In addition, our FFNN method only

considers the best predictive model for an SNP variable

but classification rates may be even further improved by

considering multiple predictive models (which all meet the

BIC cutoff) when the SNP predictors also contain missing

values. Alternatively, combining different imputation

methods together, as we did in this study, is another way

to maximize accurate SNP imputation. For example, we

found that combining the FFNN and the EM algorithm

results together provided the highest predictive accuracy of

the real data set. For the simulated data set of 1% missing

genotypes without LD threshold, combining the imputa-

tion results of the two methods delivers 98.8% accuracy

and 96.0% recovery rate (4% of the missing genotypes

remain missing).

However, such good performance can only be obtained

by tuning the parameters of the EM algorithm. The

performance of this EMmethod is sensitive to the selection

of the parameters and data sets. With the default parameter

setting, the imputation accuracies for the simulated data

sets were often lower than 90% and even below 85% in one

test case. Because the optimal settings for a real data set are

hardly predictable, it is highly recommended to create a

subdata set for validation to help identify the optimal

settings. Using the validation procedure, different combi-

nations of settings are evaluated by the comparison

between masked and imputed genotypes.

To further minimize introducing genotype errors

through imputation, one option is to identify those

imputed genotypes that are the same (ie, overlapping)

across methods. While this may introduce some bias, it is

better than not imputing at all, and significantly reduces the

missing data problem. Additionally more intensive modeling

for SNP genotypes that are difficult to impute could then

be performed.

The mechanism of missing data is an important issue in a

missing data imputation study. In this study, we used the

paradigm of missing completely at random to evaluate and

compare the imputation accuracies. However, in real data

sets, the mechanism of missing data may not be obvious

depending on various factors, such as genotyping methods,

quality control procedures and DNA quality. Knowing the

actual mechanism of missing data will be helpful to

improve the imputation methods and obtain more accu-

rate results. For association studies, it is well-known that

multiple imputation is superior to single imputation.6 The

direct use of the predicted values as observed values may

underestimate the variance in the association analysis.

Especially for predicted SNP genotypes with low con-

fidence, such bias is not trivial and needs to be estimated

and corrected by multiple imputation methods.

Although the simulated data sets and one set of real data

investigated here may not be representative of all types

of genotyping data, the results indicate that the neural

network model is an accurate and convenient tool

requiring minimal parameter tuning for SNP data recovery

and provides a valuable alternative to usual complete case

analysis. The HelixTree EM algorithm performed the best

on the simulated data in contrast to the neural network

method, which performed the best on the real data set.

Factors such as the population structure, admixture, LD,

sampling design and laboratory methods are likely to affect

both the patterns of missing data and the ease of

imputation. Additional studies of SNP imputation accuracy

using larger scale (large number of subjects and SNPs) data

sets from different study designs (eg, case–control, sib pair,

pedigree and cohort) are needed as more genome-wide SNP

association studies are now being conducted. Using

training–testing methods within a single data set, it should

be possible for investigators to assess whether data

imputation is a reasonable solution to their missing data

problem. In our study, the balance between low error rate

and high recovery rate was achieved by combining two

methods, namely the FFNN and the EM methods. In

general, imputation should be approached like any other

analysis procedure and should not be just implemented

without evaluation and testing.
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