
ARTICLE

A 3.2Mb deletion on 18q12 in a patient with
childhood autism and high-grade myopia

Mette Gilling*,1, Marlene Briciet Lauritsen2,3, Morten M�ller4, Karen Friis Henriksen1,
Astrid Vicente5,6, Guiomar Oliveira7, Christina Cintin8, Hans Eiberg9, Paal Skyt Andersen10,
Ole Mors2, Thomas Rosenberg11, Karen Br�ndum-Nielsen11, Rodney MJ Cotterill12,
Claes Lundsteen13,15, Hans-Hilger Ropers14, Reinhard Ullmann14, Iben Bache1,
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Autism spectrum disorders (ASDs) are a heterogeneous group of disorders with unknown aetiology. Even
though ASDs are suggested to be among the most heritable complex disorders, only a few reproducible
mutations leading to susceptibility for ASD have been identified. In an attempt to identify ASD
susceptibility genes through chromosome rearrangements, we investigated a female patient with
childhood autism and high-grade myopia, and an apparently balanced de novo translocation,
t(5;18)(q34;q12.2). Further analyses revealed a 3.2Mb deletion encompassing 17 genes at the 18q break
point and an additional deletion of 1.27Mb containing two genes on chromosome 4q35. Q-PCR analysis of
14 of the 17 genes deleted on chromosome 18 showed that 11 of these genes were expressed in the brain,
suggesting that haploinsufficiency of one or more genes may have contributed to the childhood autism
phenotype of the patient. Identification of multiple genetic changes in this patient with childhood autism
agrees with the most frequently suggested genetic model of ASDs as complex, polygenic disorders.
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Introduction
Childhood autism is a neurodevelopmental disorder with

onset in early childhood. It is characterized by impairment

of social interaction and communication accompanied by

stereotypic behaviour or interests with onset of symptoms

before the age of 3. The prevalence of childhood autism is
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estimated to be between 10 and 60 in 100001–3 with a

male to female ratio of four to one.4 Cumulative evidence

from family and twin studies suggests that childhood

autism is among the most heritable complex disorders with

a concordance rate of 60–90% in monozygotic twins and a

recurrence rate of 2–3% in siblings of affected probands.4,5

The mode of inheritance is unknown, but the broad

phenotypic variation together with the limited overlap in

the numerous genome scans performed in autistic cohorts

suggests genetic heterogeneity.6

Characterizing chromosomal rearrangements at the

molecular level is an approach to identify disease or

susceptibility genes for complex disorders. This approach

makes no assumptions on the mode of inheritance or

aetiological overlap with other patients and has success-

fully revealed disease genes for monogenic disorders as well

as susceptibility genes for multifactorial disorders.7–9 By

combining this method with whole-genome screening

methods, like array-based comparative genome hybridiza-

tion (array CGH), it is possible to identify combinations of

gene alterations that may confer susceptibility to complex

disorders. We used this combined approach to identify

potential susceptibility genes for childhood autism in a

patient with a de novo translocation, t(5;18)(q34;q12).

Methods
Participants
The translocation patient The patient is a 38-year-old

Danish woman with a de novo translocation

t(5;18)(q34;q12). She is the first of two children of

unrelated and healthy parents. Her younger sister is

phenotypically normal. At birth, her mother was 21 and

her father was 24 years old. She was born at term after a

pregnancy with reduced intrauterine movement as de-

scribed by the mother. Delivery was prolonged and

asphyxia was noted at birth. Birth weight was 2500 g and

birth length was 50 cm. Later in life, mild cerebral palsy,

hyper flexible joints, excessive myopia (�12 dioptres, right

eye; �11 dioptres, left eye), and hypersensitivity to sounds

were observed. She did not have any dysmorphic features.

She sat at 9 months of age, walked alone when 17 months

old, and said her first words and sentences at 42 months of

age. At 3 years of age, she was diagnosed with childhood

autism. She attended a school for autistic children until the

age of 18 years and afterwards she moved to an institution

for autistic adults. At the age of 34 years, she was tested

with Autism Diagnostic Observation Schedule (ADOS)10

module 4 for adults with fluent speech, and her mother

was interviewed with Autism Diagnostic Interview-Revised

(ADI-R).11 Both tests clearly showed that the patient

fulfilled the criteria for a childhood autism diagnosis as

defined in the International Classification of Diseases,

tenth revision (ICD-10). In the ADOS test, the patient

scored 7 points in both the ‘communication’ area (autism

cut-off 3) and ‘qualitative impairment in reciprocal social

interaction’ area (autism cut-off 6), and thus, the total

score was 14 points (autism cut-off 10). The results from

the ADI-R gave equivalently a score of 27 in the ‘qualitative

impairment in reciprocal social interaction’ area (autism

cut-off 10); a score of 18 in the ‘communication’ area

(autism cut-off 8); and a score of 9 in the ‘restricted,

repetitive behaviour’ area (autism cut-off 3). At the same

time, the Wechsler Adult Intelligence Scale-Revised (WAIS-R)

showed a verbal IQ of 78, a performance IQ of 105, and a

full IQ of 88. Today, she lives in a small sheltered house for

adult autistic patients.

The National Ethics Committees and the Danish Data

Protection Agency approved the study, and informed

consent was obtained.

Patients used for sequencing analysis For mutation

screening, DNA from a total of 32 high-grade myopia

patients and 157 autistic patients was collected. The

high-grade myopia patients were collected at The Kennedy

Institute – National Eye Clinic (Glostrup, Denmark).

One hundred autistic patients were recruited at the

Hospital Pediátrico de Coimbra, originating frommainland

Portugal and the Azorean islands. The male–female ratio

was 4.8:1, and the ages ranged between 2 and 18 years

(mean age 6.8 years). Idiopathic subjects were included

after clinical assessment and screening for known medical

and genetic conditions associated with autism, including

testing for Fragile X mutations (FRAXA and FRAXE),

chromosomal abnormalities, neurocutaneous syndromes,

endocrine (thyroid function screening), and metabolic

disorders. Another 35 children diagnosed with childhood

autism were recruited at child psychiatric hospitals in the

western part of Denmark (Jutland) (age range 3–30 years,

with mean age of 10 years and male–female ratio of 3:1).

Part of the sample has been described elsewhere.12 Thirteen

autistic patients were ascertained at Kennedy Institute –

National Eye Clinic (Glostrup, Denmark). These patients

were all unrelated and were part of the IMGSAC group.

Assessment methods and inclusion criteria have previously

been described.13 Eleven of the thirteen patients had

siblings and some even additional relatives with a perva-

sive developmental disorder diagnosis. Four patients

diagnosed within the autism spectrum were collected at

Psychiatric Hospital (Frederiksborg Amt, Denmark). In all

of these 152 patients, childhood autism was diagnosed

in accordance with DSM-IV14 or ICD-1015 criteria using

ADI-R in addition to ADOS or the Childhood Autism

Rating Scale.10,16 In addition, five DNA samples from

autism spectrum disorder (ASD) patients with chromoso-

mal rearrangements were included. Two of these DNA

samples were collected at the Wilhelm Johannsen Centre

for Functional Genome Research, University of Copenha-

gen (Denmark) and were from Danish men diagnosed with

childhood autism in accordance with ICD-10. Two DNA
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samples from a Swedish, male twin couple were collected at

the Department of Clinical Genetics, University Hospital

Lund (Sweden) and one male DNA sample was collected by

James Lespinasse at Laboratoire de Genetique Chromoso-

mique, Centre hospitalier Chambery (Chambery, France).

These three patients have an ASD diagnosis but have not

been diagnosed according to ICD-10 or DSM-IV.

Whole-genome DNA amplification

When necessary DNA samples were genome amplified

using GenomiPhit DNA Amplification Kit (GE Healthcare,

Buckinghamshire, UK).

The Phi29 WGA kit (Amplicon, Brighton, UK) was used

to amplify DNA from blood spots.

Fluorescence in situ hybridization

Metaphase chromosomes were prepared from peripheral

blood lymphocytes, and the karyotype of the translocation

patient was determined by G-banding. Fluorescence in situ

hybridisation (FISH) was performed using 250ng biotin-14-

dATP-labelled bacterial artificial chromosome (BAC) clones

from the RPCI-11 library according to standard protocols.

Array CGH

Array CGH with a whole-genome 32K BAC array was

performed for the translocation patient as described

previously.17

Real-time quantitative PCR analysis (RT Q-PCR)

cDNA synthesis of mRNA or total RNA (tissues used listed

in Supplementary Table S1A and S1B) (Clontech, CA, USA)

was performed using SuperScript II reverse transcriptase

(Invitrogen) according to manufacturer. cDNA was inves-

tigated for DNA contamination by PCR using three primer

pairs located in a region with no known genes (Supple-

mentary Table S2). Real-time quantitative PCR (RT Q-PCR)

analysis was carried out on a DNA Engine Opticon 2

(Bio-Rad, Göteborg, Sweden) using LightCycler FastStart

DNA MasterPLUS SYBR GreenI (Roche, Hvidovre, Denmark).

From 12 analysed housekeeping genes, 6 were selected for

normalization by using the BestKeeper software.18 Primers

used are listed in Supplementary Table S3.

In situ hybridization

Coronal cryostat sections (12 mm thick) of the mouse brain

were prepared and mounted on Superfrost Pluss slides. The

sections were hybridized as previously described19 with

three 38-mer 35S-labelled oligonucleotide probes comple-

mentary to Brunol4 mRNA. An oligonucleotide probe was

used as sense control (Supplementary Table S4).

Images of the sections on X-ray film were transferred to a

computer using a light box, a COHU 4912 high-perfor-

mance CCD camera, and Image 1.42 software (Wayne

Rasband, NIH, Bethesda, MD, USA). The pictures were

visualized with Adobe Photoshop 7.0.

Sequencing

Mutation analysis of the BRUNOL4 gene (NM_020180) was

carried out by direct sequencing of all the 12 coding exons

and exon–intron boundaries in 157 ASD patients and 32

high-grade myopia patients. The sequencing reactions

were carried out by Macrogen Inc. in Korea (http://

www.macrogen.com/), and ChromasPro version 1.33

(Technelysium Pty Ltd, Australia) was used to analyse the

data. Primers and conditions are listed in Supplementary

Table S5.

Results
The chromosome break points of the translocation patient

were characterized by FISH. On chromosome 5, the BAC

clone RP11-541P9 was spanning the break point, while

RP11-256N5 was proximal and RP11-2A20 was distal. No

known genes were located within this break point region.

On chromosome 18, an approximately 3.2Mb microdele-

tion containing 17 annotated RefSeq genes and two

ultraconserved sequences (UCSs)20 was identified (Supple-

mentary Table S6; Figure 1). At the proximal deletion break

point, BAC clone RP11-812d8 (chr18:30 184–30378Mb;

NCBI35; HG17) was present and RP11-108g18 (chr18:

30 197–30378Mb; NCBI35; HG17) was deleted. At the

distal break point, the fosmid clone G248P85590D6

(chr18:33 355–33392Mb; NCBI35; HG17) was deleted

and the BAC clone RP11-1147p1 (chr18:33 276–

33467Mb; NCBI35; HG17) was present. FISH analyses of

the parents showed that the deletion occurred de novo.

Presence of microdeletions/duplications elsewhere in

the genome was investigated by array CGH. Apart from the

deletion at the 18q break point, a deletion of approxi-

mately 1.2Mb was identified at 4q35 (RP11-215A19 to

RP11-746B09; chr4:187 648–188915Mb; NCBI35; HG17).

This deletion comprised two RefSeq genes: MTNR1A

(Melatonin receptor 1A) and FAT (Human homologue of

the Drosophila fat tumour suppressor gene). Presence of

the deletion was confirmed by FISH analyses, which

showed that the deletion was inherited from the father.

As the published information on most of the genes

deleted at 18q12 was sparse, we determined the tissue

expression profile of 14 of the 17 deleted genes by

RT Q-PCR. Dystrobrevin alpha (DTNA) and polypeptide

N-acetylgalactosaminyltransferase (GALNT1) were already

well described and were therefore not included in this

study, and KIAA1328 was not annotated at the time of

investigations. Eleven of the fourteen genes were expressed

in fetal and/or adult brain (normalized expression pattern

of the 14 genes in human brain tissue is shown in Figure 2).

BRUNOL4 expression was much higher in both fetal and

adult brain than any of the other genes (Supplementary

Table S1A), and we therefore investigated the tissue

expression pattern of this gene further with mRNA in situ
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hybridization on mouse brain sections. A strong hybridiza-

tion signal for Brunol4 was detected in the mouse

neocortex, striatum, cerebellum, amygdala, hippocampus,

piriform cortex, and hypothalamus (Figure 3). We further

investigated involvement of BRUNOL4 in ASD and myopia,

by sequencing 157 ASD patients and 32 high-grade myopia

patients.21,22 Three new silent nucleotide changes were

identified within the coding region of BRUNOL4 in three

unrelated ASD patients and submitted to the NCBI SNP

database: ss67005831, ss67005837, and ss67005840.

Furthermore, two new silent nucleotide changes within

the coding region were identified in two unrelated high-

grade myopia patients and were also submitted to the NCBI

SNP database: ss67005834 and ss67005843.

Discussion
In a female patient diagnosed with childhood autism and

a de novo translocation t(5;18)(q34;q12), we identified a

3.2Mb deletion encompassing 17 genes (Figure 1) at the

18q12 translocation break point and a 1.27Mb deletion on

chromosome 4q35. Since chromosomal imbalances are

known causes of mental retardation and other congenital

anomalies,23 and comorbidity of mental retardation with

autism is a frequent finding, it is likely that deletion of one

or more genes in this patient may lead to the observed

childhood autism phenotype due to haploinsufficiency.

On chromosome 4, two known genes, MTNR1A (Mela-

tonin receptor 1A) and FAT (homologue of Drosophila

tumour suppressor fat), and an approximately 900 kb

gene desert located 50 to these genes were deleted

(chr4:187 648–188915Mb, NCBI35; HG17). These dele-

tions were inherited from the father, who had ADHD-like

features. Previously, five copy number variations have

been identified in this area (Database of Genomic Variants;

http://projects.tcag.ca/variation/). Three normal control

subjects have duplications of a large area of chromosome

4q35 encompassing MTNR1A and FAT (chr4:188 251–

188282Mb, NCBI35; HG17).24 Another normal control
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subject has a duplication of the gene desert 30 to MTNR1A

and FAT (chr4:187 636–187797Mb, NCBI35; HG17),25

whereas two different normal controls have duplications

(chr4:188 251–188282Mb, NCBI35; HG17)26 and

(chr4:188 353–189810Mb, NCBI35; HG17), and one has

a deletion of the gene desert 50 to MTNR1A and FAT

(chr4:188 260–188262Mb, NCBI35; HG17).27 Deletion of

the MTNR1A and FAT genes is not reported in normal

control subjects, but in a patient with an unknown

phenotype, a deletion including MTNR1A, FAT, and six

other genes was reported during screening of large-scale

variations in the human genome.28 Moreover, in a patient

with schizoaffective disorder a 4q deletion possibly con-

taining the FAT gene has been published.29 The FAT gene is

expressed in the eye and CNS in addition to other tissues,

and encodes a protein of the cadherin superfamily of cell

Figure 3 In situ hybridization for mRNA transcript of Brunol4 on coronal sections of mouse brain. The montage shows images on X-ray films of
hybridized coronal sections from rostral to caudal levels (a–g). A coronal section of the forebrain, hybridized with a sense probe, is seen in h.
am¼ amygdala; ce¼ cerebellum; de¼dentate gyrus; hy¼hypothalamus; hi¼hippocampus; ma¼mammillary nuclei; mg¼medial geniculate body;
pi¼piriform cortex; sp¼ septum; sr¼ striatum; su¼ superior colliculus; te¼ tegmental area; th¼ thalamus.
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adhesion molecules that is involved in cell migration, cell–

cell contact, and establishment of cell polarity.30 It has

recently been suggested that FAT and its protein partners

might be components of a molecular pathway involved in

susceptibility to bipolar disorder.31 Several lines of evi-

dence suggest that neuropsychiatric disorders such as

ASDs, schizophrenia, and bipolar disorder have common

susceptibility genes32–34 and FAT might be one of these.

MTNR1A encodes a melatonin receptor in the brain that is

mainly involved in transmitting the effect of melatonin on

circadian rhythm.35 Since biological rhythm disturbances

are often reported in patients with mood disorders and a

low melatonin level has been reported in individuals with

ASDs, it is possible that haploinsufficiency of MTNR1A

confer susceptibility to ASD.35,36

The deletion on chromosome 18 is at chromosome

position chr18:30 197–33392Mb (NCBI35; HG17). A large

number of deletions of varying sizes and locations on the

long arm of chromosome 18 have already been pub-

lished.37–41 However, most of the deletions that apparently

overlap with the present deletion have not been fine

mapped, which complicates genotype/phenotype correla-

tions. The most common features of the 18q12 deletion

patients described in the literature are very mild dys-

morphic features hardly disclosed at birth, psychomotor

delay, hypotonia, ataxia, some degree of mental retarda-

tion, and behavioural abnormalities.39 These features

indicate that one or more genes within this region are

crucial for development and normal function of the brain.

McEntagart et al42 have recently reported a patient with

del(18)(q11.2q12.2). Even though the precise break points

of this deletion are unknown, it apparently includes the

same 17 known genes identified in the present case

(Figure 4). In this region, there is a 4.4Mb large evolu-

tionary stable gene desert43 and 5 UCSs. UCSs are defined

as sequences Z200bp with 100% identity in the human,

mouse, and rat genome,20,44 and some UCSs have been

shown to posses enhancer activity,45 suggesting that they

are involved in gene regulation and development.20,44 The

presence of a stable gene desert as well as five UCSs in this

region suggests that one or more of the deleted genes are

developmentally important.

The phenotypic similarities of the present case and the

patient reported by McEntagart and colleagues (Table 1),

suggest that haploinsufficiency of one or more of the 17

deleted genes may lead to the common features. Tissue
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Table 1 Phenotype comparison of the present case to the
patient reported by McEntagart et al42

Phenotypes Present case McEntagart

Hypotonia No Yes
Febrile convulsions No Yes
Cerebral paresis Yes No
Delayed psychomotor development Yes Yes
Delayed language development Yes Yes
Behavioural difficulties Yes Yes
IQ 85 61
Autism Yes NR
Myopia Yes NR

NR, not reported.
Identical traits are written in bold.
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expression profiles of 14 of these genes showed that 11 of

them were expressed in the brain (Figure 2). Furthermore,

these genes code for proteins, which may be involved in

the normal functioning of the central nervous system; a

zinc transporter (SLC39A6) that assures cofactors for

hundreds of cellular enzymes;46 four zinc finger transcrip-

tion factors (ZNF397, ZNF396, ZNF271, ZNF24); a scaffold-

ing protein (STATIP1) of the JAK-STAT signalling pathway

suggested to be involved in neuronal and glial cell

proliferation, survival, and differentiation;47–49 an O-

glycosylating enzyme (GALNT1) that might enable cells

to adhere, differentiate, and migrate;50 a microtubule

associated protein (MAPRE2) that is possibly involved in

the development of neuronal processes,51 and an RNA-

binding protein (BRUNOL4) that is most likely involved in

mRNA splicing, regulation of translation, and rate of

mRNA turnover.21,52 The properties of these genes there-

fore suggest that each of them may have contributed to the

ASD phenotype of the patient. Further studies should

therefore be carried out to assess the involvement of

these genes in ASDs using large patient and control

cohorts.

We investigated one of the genes, BRUNOL4, further as

this gene might be of interest with regards to the combined

myopia and childhood autism phenotype observed in the

present case, since it is expressed in the developing eye21,22

as well as in the brain areas most consistently found to be

affected in neuropathological investigations of autism (the

limbic system, cerebellum, and cerebral cortex53) (Supple-

mentary Table S1A and S1B; Figure 3). Moreover, BRUNOL4

expression was significantly higher in both fetal and adult

brain than any other gene residing in the deleted region. In

addition, this gene belongs to the bruno-like elav (em-

bryonic lethal abnormal visual system) family of

genes,21,52 which result in abnormal eye and brain

development in Drosophila when mutated.54–56 We

therefore sequenced the coding region of BRUNOL4 in

157 ASD patients and 32 high-grade myopia patients,

and identified 5 silent nucleotide substitutions that are

most likely not involved in the development of myopia

and/or ASDs. However, further studies including larger

patient and control cohorts are necessary to investigate

involvement of BRUNOL4 in the aetiology of autism and/or

myopia.

In conclusion, we have identified deletion of 19

genes in a patient with myopia and childhood autism,

and one or more of these genes might have contributed

to the development of these features. In addition,

positional effects of the deletions and the translocation

break points, and the asphyxia at birth may have

contributed to the phenotype observed in this patient.

Identification of multiple genetic changes in a patient with

childhood autism is in line with the most frequently

suggested genetic model of ASDs as complex, polygenic

disorders.
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