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Genome-wide analysis of DNA copy-number changes using microarray-based technologies has enabled the
detection of de novo cryptic chromosome imbalances in approximately 10% of individuals with mental
retardation. So far, the majority of these submicroscopic microdeletions/duplications appear to be unique,
hampering clinical interpretation and genetic counselling. We hypothesised that the genomic regions
involved in these de novo submicroscopic aberrations would be candidates for recurrent copy-number
changes in individuals with mental retardation. To test this hypothesis, we used multiplex ligation-
dependent probe amplification (MLPA) to screen for copy number changes at eight genomic candidate
regions in a European cohort of 710 individuals with idiopathic mental retardation. By doing so, we failed
to detect additional submicroscopic rearrangements, indicating that the anomalies tested are non-
recurrent in this cohort of patients. The break points flanking the candidate regions did not contain low
copy repeats and/or sequence similarities, thus providing an explanation for its non-recurrent nature. On
the basis of these data, we propose that the use of genome-wide microarrays is indicated when testing for
copy-number changes in individuals with idiopathic mental retardation.
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Introduction
Genome-scanning array technologies, such as microarray-

based comparative genomic hybridisation (array CGH),

enable the detection of interstitial submicroscopic DNA

copy-number alterations in individuals with mental

retardation (MR) of unknown aetiology. De novo submicro-

scopic alterations have been identified in approximately

10% of individuals with MR using both bacterial artificial
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chromosome (BAC) microarrays1–8 and single-nucleotide

polymorphism-based microarrays.9

Using genome-wide microarray strategies, novel recur-

rent interstitial submicroscopic aberrations have only been

reported sparsely in individuals with MR.10–17 So far, the

vast majority of the cryptic microdeletions/duplications

identified appear to be unique, which hampers its clinical

interpretation and counselling of the families. However,

because these genomic imbalances are likely to harbour

dosage sensitive genes related to the pathogenesis of MR,

we hypothesised that the genomic regions involved in de

novo submicroscopic aberrations are candidates for recur-

rent copy-number changes in individuals with idiopathic

MR. To test this hypothesis, we subjected eight pre-selected

regions to targeted copy-number analysis using multiplex

ligation-dependent probe amplification (MLPA) in a cohort

of 710 individuals with idiopathic MR and compared the

efficacy of our targeted MLPA-based approach to genome-

wide scanning strategies.

Materials and methods
Subjects

In total, 710 mentally retarded individuals with or without

facial dysmorphisms or congenital malformations were

included in this study. All individuals exhibited normal

G-banded karyotypes at 550-band resolution. Genomic DNA

was prepared from blood lymphocytes by standard proce-

dures. The DNA samples were derived from Nijmegen, The

Netherlands (n¼200), Oxford, UK (n¼200), Schwerzenbach,

Switzerland (n¼100), Stockholm, Sweden (n¼ 80), Antwerp,

Belgium (n¼80), and Troina, Italy (n¼50).

Selection of novel submicroscopic aberrations and
in silico LCR analysis

We selected eight de novo submicroscopic copy aberrations

for testing among individuals with MR. The aberrations

varied in size from 480kb to 12.4Mb and were dispersed

throughout the genome (Table 1). The aberrations were

previously identified in a cohort of 100 mentally retarded

individuals using genome-wide tiling path resolution array

CGH.1 The 2q23.1q23.2 microdeletion partly overlapped

with a microdeletion previously reported by our group.8,18

The flanking 400 kb break point regions of the eight

candidate regions were screened for the presence of

homologous low copy repeats (LCRs) using the Segmental

Duplication Database (http://humanparalogy.gs.washington.

edu) and BLAST2 (http://www.ncbi.nlm.nih.gov/blast/bl2seq/

wblast2.cgi) analyses. The break points were defined by the

average start and end positions, respectively, of the first and

last flanking BAC clone that identified the genome imbalance

(based on NCBI, Build 35, May 2004).

Multiplex ligation-dependent probe amplification

For the MLPA screening two to seven probes were designed

within exonic sequences in the genomic regions of interest

(Table 2) according to a protocol provided by MRC-Holland

(http://www.mlpa.com/pages/support_desing_synthetic_

probespag.html). The same probes had also been used for

the confirmation of the de novo aberrations, previously

identified by genome-wide tiling resolution array CGH

(Figure 1).1 The MLPA probes were combined in one MLPA

assay in conjunction with four standard control probes in

three different genes, VIPR2,MRPL41 and KIAA0056. MLPA

reactions using 200ng genomic DNA were performed as

described previously.19,20 All MLPA reagents were obtained

from MRC-Holland, Amsterdam, The Netherlands. Ampli-

fication products were identified and quantified by

electrophoresis on a capillary sequencer (ABI 310, ABI

3100, ABI 3130 or ABI 3730), using GeneMapper software

(Applied Biosystems, Foster City, USA). For copy-number

quantification data were normalised by dividing each

probe’s peak area by the average peak area of the control

probes of the sample. The normalised peak patterns were

divided by the average peak area of all the samples in the

same experiment. For all DNA samples, we computed the

coefficient of variation (c.v.) of the normalised signal

strength over the controls. If a particular sample had a

c.v. of more than 15, the result of the analysis for that

particular sample was discarded. If a particular probe had

a c.v. of more than 15 over all samples tested, the analysis

was repeated. Copy-number change detection was based

on thresholds for gains and losses of 1.30 and 0.70,

respectively. The MLPA analyses were repeated for all

samples in which an aberration was identified. For these

confirmation experiments, DNA samples of healthy con-

trols were used for the normalisation. If available, DNA of

positive controls were included in the MLPA assays.

Results and discussion
We used MLPA to look for copy-number changes at eight

pre-selected genomic regions in a European cohort com-

prising 710 individuals with idiopathic MR with or

without associated dysmorphisms or congenital anomalies.

Table 1 Candidate regions screened for DNA copy-number
changes

Location Start (Mb)a End (Mb)a Size (Mb)

1 1p34.3p34.2 39.2 43.1 3.85
2 2q23.1q23.2 149.2 150.1 0.92
3 3q27.1q29 184.3 196.7 12.42
4 5q35.1 170.5 171.5 0.97
5 9q31.1 99.7 102.6 2.85
6 9q33.1 115.3 115.8 0.48
7 11q14.1q14.2 77.8 85.1 7.28
8 12q24.21q24.23 114.9 116.9 1.98

aOn the basis of 32k BAC microarray data (NCBI, Build 35, May 2004).6

Non-recurrent submicroscopic genome imbalances
DA Koolen et al

396

European Journal of Human Genetics

http://humanparalogy.gs.washington.edu
http://humanparalogy.gs.washington.edu
http://www.ncbi.nlm.nih.gov/blast/bl2seq/wblast2.cgi
http://www.ncbi.nlm.nih.gov/blast/bl2seq/wblast2.cgi
http://www.mlpa.com/pages/support_desing_synthetic_probespag.html
http://www.mlpa.com/pages/support_desing_synthetic_probespag.html


Table 2 MLPA probe information

Gene Band Size 50 hybridisation sequencea 30 hybridisation sequenceb

KCNQ4 1p34.2 100 CAGGGCAACATCTTCGCCACGTCCGCGCT GCGCAGCATGCGCTTCCTGCAGATCCTGC
EDN2 1p34.2 124 GCGGGAGCCTCGGTCCACACATTCCAGGTGGAGGAAGAGAT AGTGTCGTGAGCTGGAGGAACATTGGGAAGGAAGCCCGCGG
ZMYND12 1p34.2 128 CCATGTTTGACCCTTACCGGCCACTGTACGGGCCTTTCTGGAC TTGGACTCCTTGGGAGTCGTTTCTCGGCCATTTGACCCGTGGG
MACF1 1p34.3 92 GTGGAATGTTTCACTGCTCCCAAGG AGCGGGTAATGAGAGTGGCACTTAG
MBD5 2q23.1 84 CAAAGAGTGTGACGGAGGGGA CAAGGAAGGAGGTCTTCCAGC
EPC2 2q23.1 92 GAGGTGGAAGGTGAAGTATTTGTTT TCACCTGGTTTTTGTTTGCTATCTG
MBD5 2q23.1 100 CACTAACAGAAGGTTTGGAAGCCTACAGC CGTGTCCGGAAAAGGAACAGAAAGTAAGC
EPC2 2q23.1 108 CAGTTAGTTCAGATGCAAAGGCAGCAACTTGCC CAGCTTCAGCAGAAACAGCAATCTCAGCATTCC
KIF5C 2q23.1 112 CCGTGTTTGTATTTTCGCCCACTAGGGGAAGCTGC ATGACCCCCAGCTCATGGGGATCATCCCACGAATT
MBD5 2q23.1 120 CAGAGTCGGGGATTTGGAGAGCTGCTAAGCACTGCAAAG CAAGACCTGGTCCTAGAGGAGCAGTCTCCAAGTTCCTCA
MBD5 2q23.1 124 CTAAATACCCCAAGCAGTGCAGCTTTTCCTACTGCATCTGC CGGAAGTAGTTCTGTAAAGAGTCAGCCTGGTTTGCTGGGAA
MAP3K13 3q27.2 84 GCACGATGGCCAACTTTCAGG AGCACCTGAGCTGCTCCTCTT
LPP 3q28 88 GACGCTGAGATTGACTCCTTGAC CAGCATCTTGGCTGACCTTGAGT
TP723L 3q28 92 GGAGAATGGGGTGATATTGGAGAAG CTGCATGATAAGACCTGTGACCTTC
HRASLS 3q29 100 CCTTTACAAGCGCCAAGTCTGTATTCAGC AGTAAGGCCCTGGTGAAAATGCAGCTCTT
FGF18 5q35.1 108 CCTCAGGTCCCACTGACCGCTTCTCCATCTGTT TCCCGCAGGTGTTTACACTTCCTGCTGCTGTGC
STK10 5q35.1 112 CTCGCCCTGTGCCACCCCAACTGTGCCTGATAGAC CTGCCCCAGCGTTCCTGACTTCTTGCTGGCCTGTG
DC-UbP 5q35.1 120 CTTGGCACCGCCAATCAACATGATAGAGGAAAAGAGCGA CATAGAGACTCTGGATATTCCTGAGCCACCACCCAATTC
STX17 9q31.1 92 CAGGTGCACTCATCGGGGGAATGGT AGGGGGTCCTATTGGCCTCCTTGCA
PRG-3 9q31.1 104 CGAATGCACTGACACTTTTCAGGTGCATATC CAAGGATTCTTCTGTCAGGACGGAGACTTAA
GRIN3A 9q31.1 108 GCCACAGCCACCATGATCCAACCAGAACTTGCT CTCATTCCCAGCACGATGAACTGCATGGAGGTG
C9orf27 9q33.1 92 CAAAGGCTCTGTGTTAGTGGATTCA CAAGCAACCTGTACTCCTCAAAGAA
C9orf27 9q33.1 100 GTATGCAGACTCATCCATCCATGAATCTA GATTGCAGGGATGTGACCTATGTAATGAA
GAB2 11q14.1 84 CTCCAGCCAGCCAACTCTGTT CACGTTTGAACCCCCTGTGTC
DLG2 11q14.1 112 CTGACGGGCTTTCTGCCCAAGAGATGAGATGAGAG CCTCCTCACCCCAGCAGATGTCCAGAGCTGATTTA
PICAM 11q14.2 120 CACAGTGTCACCGGCTCTGCCGTATCCAAGACAGTATGC AAGGCCACGACCCACGAGATCATGGGGCCCAAGAAAAAG
NOS1 12q24.22 112 CACATGTTCGGTGTTCAGCAAATCCAGCCCAATGT CATTTCTGTTCGTCTCTTCAAGCGCAAAGTTGGGG
KSR2 12q24.23 120 CTGGCTTTCTCATGGCTTACCCATTGTCTCTGCTCTTCT GTTCCAACTCAGGAGGCAACCTTTCCAAACAAGACTGGA

aThe 50 half-probe is preceded by the 50 universal primer tag.
bThe 30 half-probe is preceded by a 50 phosphate group and followed by the 30 universal primer tag.
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Causative copy-number changes in these eight regions

were previously described in single individuals with MR.1

The eight regions were based upon the unique and de novo

aberrations that had been found in our initial study among

a cohort of 100 MR patients using genome-wide tiling path

resolution array CGH.1 Through the MLPA assay, we failed

to detect additional submicroscopic rearrangements at all

candidate regions in this patient cohort. Figure 2 shows an

example of the data obtained by the MLPA copy-number

screening of the candidate regions. The loss of the 11q14.1

segment is clearly demonstrated in the positive control

sample, whereas in the remaining test samples in the assay,
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Figure 1 MLPA validation of submicroscopic genome imbalances. (a) Loss 1p34.3p34.2, (b) loss 2q23.1q23.2, (c) loss 3q27q29, (d) gain 5q35,
(e) loss 9q31.1, (f) loss 9q33.1, (g) loss 11q14.1q14.2, (h) gain 12q24.21q24.23.

Non-recurrent submicroscopic genome imbalances
DA Koolen et al

398

European Journal of Human Genetics



no copy-number changes are found. Subsequently, we

screened the flanking break point regions of the pre-

selected candidate regions for the presence of LCRs and/or

sequence similarities that might predispose for the occur-

rence of non-allelic homologous recombination events

leading to loss or gain of the intervening DNA sequence.21

However, no significant LCRs and/or sequence similarities

could be identified. The present study is the first report of

a comprehensive screen for interstitial submicroscopic

aberrations in a large cohort of individuals with MR using

MLPA. Of course, the results might have been different if

other regions, such as subtelomeric regions, had been

analysed in this cohort. Although copy-number changes in

these latter regions are usually not mediated by LCRs,

which is similar to our eight selected regions, they are in

regions that have already been associated with recurrent

aberrations.

Others have employed a variety of microarray-based

targeted approaches to detect recurrent submicroscopic

aberrations. Sharp et al,15 for example, generated a

segmental duplication BAC microarray targeted to 130

potential rearrangement hot spots in the human genome.

By using this targeted approach, they tested 290 indivi-

duals with MR and identified 16 pathogenic rearrange-

ments, including four microdeletions in 17q21.31.22 The

phenotypic similarities between the individuals with an

overlapping 17q21.31 deletion subsequently pointed to a

new microdeletion syndrome.10,17,22 More recently, several

other novel recurrent microdeletions that are mediated by

flanking LCRs have been identified. These recurrent

aberrations may give rise to new genomic disorders, such

as the 15q24 microdeletion syndrome16 and the 10q22q23

microdeletion syndrome.23 Targeted microarrays have

been developed with target sequences corresponding to

genomic regions of known clinical significance, such as the

chromosome subtelomeres and regions implicated in

well-known human genomic disorders.24–27 Using these

targeted microarrays, Shaffer et al28 found clinically

relevant genomic alterations in 5.6% of 1500 consecutive

cases referred to the clinic for a variety of developmental

problems. Indeed, these targeted microarrays have some

advantages over genome-wide microarray scanning

technologies, especially in a diagnostic setting, as parental

samples are not requisite for the clinical interpretation of

the array CGH findings.29 In addition, in most cases there

is ample information available about the clinical conse-

quences of these submicroscopic copy-number alterations,

thus facilitating the genetic counselling of families.

However, most known microdeletion syndromes, will be

clinically recognised by experienced clinical geneticists

and can be confirmed by specifically designed FISH

tests. Therefore, patients with a recognisable microdeletion

syndrome will only rarely be sent in for microarray

analysis. Moreover, in contrast to genome-wide microarray

approaches, targeted approaches will miss sporadic DNA

copy-number changes in MR, as these regions will not be

represented on such microarrays.30 The latter might be

overcome if the targeted array is up-dated, regularly, by

including all newly and uniquely reported microaberra-

tions. By doing so, one might eventually end up with a

whole genome-wide array.

Our study indicates that de novo submicroscopic aberra-

tions that are not flanked by genomic architectural features

conferring susceptibility to rearrangements appear to be

non-recurrent in a large cohort of patients. In the future it

is conceivable that advanced technologies and results from

large numbers of patient studies will help unravel the

majority of genes involved in MR, thereby making targeted

testing approaches more viable. However, in the mean-

time, we recommend the use of genome-wide micro-

arrays when testing idiopathic MR patients for genome

imbalance.
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