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Y-chromosome diversity characterizes the Gulf of
Oman
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Arabia has served as a strategic crossroads for human disseminations, providing a natural connection
between the distant populations of China and India in the east to the western civilizations along the
Mediterranean. To explore this region’s critical role in the migratory episodes leaving Africa to Eurasia and
back, high-resolution Y-chromosome analysis of males from the United Arab Emirates (164), Qatar (72)
and Yemen (62) was performed. The role of the Levant in the Neolithic dispersal of the E3b1-M35
sublineages is supported by the data, and the distribution and STR-based analyses of J1-M267
representatives points to their spread from the north, most likely during the Neolithic. With the exception
of Yemen, southern Arabia, South Iran and South Pakistan display high diversity in their Y-haplogroup
substructure possibly a result of gene flow along the coastal crescent-shaped corridor of the Gulf of Oman
facilitating human dispersals. Elevated rates of consanguinity may have had an impact in Yemen and
Qatar, which experience significant heterozygote deficiencies at various hypervariable autosomal STR loci.
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Introduction
Arabia has played the role of a strategic crossroads between

Africa and Eurasia, facilitating the first exodus of modern

humans from the Horn of Africa to the present day Yemen

through the Bab el Mandab Strait at mouth of the Red

Sea.1 – 3 Subsequent migrations through the northern

intercontinental passageway between Africa and the

Levant (the Levantine corridor) have also been documen-

ted.4,5 In addition, the Arabian Peninsula has linked the

distant populations of China and India to communities of

the Mediterranean and beyond. Although the Persian Gulf

to the east and the Arabian Sea to the south offered easy

passages to India and Asia, the Red Sea on the western coast

of the Arabian Peninsula provided a natural connection to

the Mediterranean Sea.

Just north of the peninsula, the Nile River Valley in Egypt

and the Tigris–Euphrates area in Iraq comprised a region

known as the Fertile Crescent. Recognized as the birthplace

of agriculture during the Neolithic (B8000 yBP) based on

linguistic and archaeological evidence,6,7 the Fertile Crescent

participated in ancient international trade. Although the

fertile soils produced a surplus of food, the region lacked

the natural resources necessary for building permanent

structures (timber) or making metals (minerals). Therefore,

early inhabitants relied on trade to acquire these raw

materials and established close links with the commercial

centers along the Persian Gulf as reflected in archaeological

finds.8 – 10 At the extreme southern end of the Arabian

Peninsula, referred to as Arabia Felix by the Romans
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(‘Happy Arabia’ in Latin) and including present day Yemen,

the spice trade was an important source of wealth.

Frankincense and myrrh were commonly exported to the

Mediterranean via camels and to India by sea.

In agreement with archaeological and historical records

that accentuate the region’s active role as a point of contact

between distant populations, the Middle East displays a

high degree of genetic diversity.11 – 14 Although genetic

diversity is elevated, various analyses have identified

structural barriers to gene flow into and out of the Near

East. Specifically, mtDNA,15 Y-chromosome14,16 – 18 and

autosomal STR studies19 have identified the Dasht-e Kavir

and Dash-e Lut deserts in Iran and the Hindu Kush

mountains in eastern Afghanistan as potential barriers to

gene flow to the surrounding regions. In contrast,

geographic facilitators for gene flow have also been

described, including a region along the southern coast of

Iran, Afghanistan and Pakistan known as Balochistan

mediating gene flow from South Pakistan to South Iran.14

Mitochondrial DNA analyses have been performed on

collections from Qatar, United Arab Emirates (UAE) and

Yemen,5,20 yet the paternal component of this historically

and geographically significant region is incomplete.

Although Y-chromosome studies have focused on neigh-

boring areas, including Egypt,4 Somalia,21 Iraq,22 Syria and

Lebanon23 as well as on the southern Arabian populations

of Oman4 and Yemen,24 high resolution Y-chromosome

analyses of the Persian and Oman Gulfs are fragmentary.

To gain a more complete understanding of this region’s

role in human dispersals, particularly in light of previous

studies that have identified barriers and conduits to gene

flow that would affect its Y-haplogroup substructure, the

present study employs high-resolution Y-chromosome

analyses of three southern Arabian populations: Yemen

(n¼62), Qatar (n¼72) and the UAE (n¼164). In addition,

17 Y-STR loci were typed to obtain STR-based age estimates

for a selection of informative Y-chromosome haplogroups

in the populations in which they were observed. Results

from these Y-specific analyses were interpreted in conjunc-

tion with data on 15 autosomal STR loci for Yemen, Oman,

Qatar, Iran, Egypt19,25,26 and UAE (Cadenas, unpublished

results) reanalyzed collectively with the aim of exposing

characteristics unique to the southern Arabian Peninsula.

Materials and methods
Sample collection and DNA extraction

Blood samples from 298 unrelated males representing three

populations that include the UAE, Qatar and Yemen were

collected in EDTA Vacutainer tubes. The paternal ancestry

of the donors was recorded for a minimum of two

generations. Table 1 provides additional information on

the sample size, geography and linguistic affiliation of the

populations involved. DNA was extracted from the blood

using the phenol–chloroform extraction method.33 Ethical

guidelines were adhered to in strict compliance with NIH

guidelines as well as to those stipulated by the institutions

involved.

Y-haplogroup analysis

Seventy-six binary genetic markers were genotyped12,30,34–36

following the Y-chromosome phylogeny hierarchy using

standard methods, including PCR/RFLP, allele-specific

PCR37 and the YAP polymorphic Alu insertion.38 The

amplicons generated from these methods were separated

by electrophoresis in 1X TAE, 3% agarose gels and

visualized subsequent to ethidium bromide staining and

UV light photography in a Fotodyne FOTO/Analysts. The

phylogenetic relationships of the relevant Y-chromosome

haplogroups are illustrated in Figure 1 according to YCC

nomenclature39 with new marker designations as provided

in the published literature.12,30,34 – 36

Statistical and phylogenetic analyses

Twenty-nine geographically targeted populations reported

in previous studies (Table 1) were included in the statistical

and phylogenetic analyses performed to assess Y-haplo-

group variation and phylogeographic relationships

throughout the region. The Georgia and Tajikistan data

will be published in detail elsewhere. The various data sets

were used at a resolution of major haplogroups (A through

R). Haplogroup frequencies were compared by means of

a w2-test. Phylogenetic comparisons were made with

multidimensional scaling (MDS) analysis based on Fst

distances40 using the Statistical Package for the Social

Sciences (SPSS) software program.41 Genetic structure was

further examined by performing two sets of analyses of

molecular variance (AMOVA)42 using the Arlequin version

2.000 package43 with the 32 populations subdivided

according to two criteria, geography (North Africa, East

Africa, Arabian Peninsula, Caucasus, Levant, Anatolia,

Iranian Plateau, South Asia and Central Asia) and linguistic

family (Afro-Asiatic, Indo-European, Niger-Congo, Altaic

and South Caucasian). Table 1 indicates the populations

included in each of the geographic and linguistic groups

utilized in the AMOVA. Pairwise comparisons of the

populations from the present study and all reference

populations were generated using G-tests in Carmody’s

software44 to assess any genetic differences of statistical

significance.

STR analysis

DNA amplification of 17 Y-specific STR loci (specifically

DYS19, DYS385a/b, DYS389I/II, DYS390, DYS391, DYS392,

DYS393, DYS437, DYS438, DYS439, DYS448, DYS456,

DYS458, DYS635 and Y-GATA H4) was performed using

the AmpFlSTR Yfiler Amplification Kit (Applied Biosystems,

Foster City, CA, USA) according to the manufacturer’s

instructions in an Eppendorfs Mastercyclers. DNA frag-

ment separation and detection was achieved in an ABI
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Prism 3100 Genetic Analyzer (Applied Biosystems). ABI

Genescan500 LIZ was utilized as an internal size standard.

Amplicon sizes were determined using the Genescans 3.7

software and alleles were designated by comparison to an

allelic ladder from the manufacturer using Genotypers 3.7

NT software.

Haplogroup-specific expansion times were estimated for

select binary haplogroups (J1-M267, R1a1-M198, E3b1a-M78

and E3b1c-M123) by the linear expansion method. This

procedure assumes a stepwise mutation model45 and a

mean STR mutation rate of 0.00069 per STR locus per

generation46 with a 25-year intergeneration time as

performed in previous studies.4,12,47 The linear expansion

method assumes a star-like genealogy attributable to

continuous growth where the expected value of the

average coalescence time for STR alleles (T) equals the

STR variance (S) divided by the mutation rate (m) times the

number of generations since expansion.48,49 STR variances

were calculated using the vp equation of Kayser et al.50 In

addition, STR-based divergence times were calculated for

each of the haplogroups based on the method described by

Zhivotovsky et al,46,51 likewise assuming a mutation rate

of 0.00069 per STR locus per generation46 and a 25 year

intergeneration time.

Autosomal STR markers

To further assess the level of homogeneity of the popula-

tions under study, the observed and expected hetero-

zygosity for 15 autosomal STR loci were calculated using

the Arlequin version 2.000 package43 based on the

genotypes for Iran,25 Qatar,26 UAE (Cadenas, unpublished

results), and Kenya, Egypt, Oman and Yemen.19 Hetero-

zygote deficiencies (Fis and corresponding P-values) were

computed for all seven populations using the GENEPOP2

software52 according to the test described by Rousset and

Raymond.53

Results
Phylogeography

A total of 41 paternal haplogroups were identified from the

analysis of 164 United Arab Emirate, 72 Qatari and 62

Yemeni males. Figure 1 displays their hierarchical phylo-

geny as well as the frequency (percentages) distributions

for the populations under study. The geographic distribu-

tion of the major haplogroups is illustrated in Figure 2.

Only three haplogroups (E, J and R) display frequencies

above 5% in the three populations occupying the southern

portion of the Arabian Peninsula and combined account

Table 1 Geographic and linguistic description of populations analyzed

Geographic region Population Abbreviation n Language family Reference

North Africa Egypt EGY 147 Afro-Asiatic Luis et al4

Algeria (Arabs) ALA 35 Afro-Asiatic Arredi et al27

Algeria (Berbers) ALB 19 Afro-Asiatic Arredi et al27

Tunisia TUN 148 Afro-Asiatic Arredi et al27

East Africa Kenya KEN 29 Niger-Congo Luis et al4

Somalia SOM 201 Afro-Asiatic Sanchez et al21

Oromo ORO 78 Afro-Asiatic Semino et al28

Amhara AMH 48 Afro-Asiatic Semino et al28

Arabian Peninsula United Arab Emirates UAE 164 Afro-Asiatic Present study
Qatar QAT 72 Afro-Asiatic Present study
Yemen YEM 62 Afro-Asiatic Present study
Oman OMA 121 Afro-Asiatic Luis et al4

Caucasus Georgia GEO 48 South Caucasian Regueiro (unpublished results)
Armenia ARM 100 Indo-European Nasidze et al29

Azerbaijan AZE 72 Altaic Nasidze et al29

Levant Lebanon LEB 31 Afro-Asiatic Semino et al23

Syria SYR 20 Afro-Asiatic Semino et al23

Iraq IRQ 139 Afro-Asiatic Al-Zahery et al22

Anatolia Greece GRE 76 Indo-European Semino et al23

Turkey TUR 523 Altaic Cinnioǧlu et al12

Iranian Plateau North Iran NIR 33 Indo-European Regueiro et al14

South Iran SIR 117 Indo-European Regueiro et al14

South Asia North Pakistan NPK 85 Indo-European Sengupta et al30

South Pakistan SPK 91 Indo-European Sengupta et al30

Gujarat GUJ 29 Indo-European Kivisild et al31

Punjab PUN 66 Indo-European Kivisild et al31

Mongolia MON 147 Altaic Karafet et al32

Central Asia Tajikistan TAJ 24 Indo-European Regueiro (unpublished results)
Uzbekistan UZB 54 Altaic Karafet et al32

Kazakhstan KAZ 30 Altaic Karafet et al32

Kyrgyzstan KYR 52 Altaic Wells et al17

Turkmenistan TKM 30 Altaic Wells et al17
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for 74–98% of the chromosomes within these collections.

Figure 3 displays the geographic distribution of E, J and R

derivatives in a subset of the populations listed in Table 1.

AMOVA

To explore potential correlations between genetic diversi-

ties and linguistic or geographic partitioning, the AMOVA

was performed. The results of the AMOVA for the three

populations from the present study in addition to 29

reference populations are listed in Table 2. Assignment of

the populations according to the nine geographical groups

described in Table 1 generated a higher fraction of

variability among groups of populations (15.73%) than

among populations within groups (4.21%) indicating a

greater degree of interregional structuring. In contrast,

upon subdividing the populations according to the

language family (Table 1), the percentage of among group

variance is lower (8.17%) than among populations within

groups (12.94%), suggesting higher intralinguistic structuring

for these populations. Genetic diversity among groups of

populations and populations within groups correlate

significantly with geographic and linguistic partitioning.

Phylogenetic analyses

An MDS test was performed to assess phylogenetic

relationships among populations. The MDS analysis per-

formed on a matrix of Fst values based on haplogroup

frequencies for the populations in Table 1 is displayed in

Figure 4. Geographic structuring is observed involving

populations displaying affiliations with other populations

within their biogeographic zone. Within the plot, the

populations of Egypt, Iraq, Yemen, Qatar, Oman, UAE,

Syria and Lebanon occupy an intermediate position with

populations from Africa to one side and Anatolia, Cauca-

sus, Iranian Plateau, Central Asia and South Asia on the

other. Of note, for the observed partitioning is the affinity

of Egypt to populations from the Arabian Peninsula.

Furthermore, Yemen and Qatar segregate together but

separate from their neighboring populations, Oman and

UAE particularly along Dimension 2. As expected, the

populations from Central Asia group together and away
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Table 2 AMOVA resultsa

Variance (%) FST FSC FCT

Geography
Among groups 15.73 0.16**
Among populations within groups 4.21 0.05**
Within population 80.06 0.20**

Language (family)
Among groups 8.17 0.08**
Among populations within groups 12.94 0.14**
Within population 78.89 0.21**

FST, variance within populations; FSC, variance among populations within groups; FCT, variance among groups.
**Po0.001.
aAMOVA was performed according to the geographic regions and language families as indicated in Table 1.
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from the South Asian ones, however, there is a segregation

of North Pakistan with populations from Central Asia,

whereas South Pakistan shares a closer affinity to popula-

tions to the west.

Interpopulation haplogroup diversity

To discern statistically significant genetic differences,

pairwise G-test comparisons were performed with the three

populations from the present study as well as the 29

reference populations described in Table 1. A total of 496

pairwise assessments were made and the results are

provided as Supplementary Table 1. The number of

nonsignificant genetic differences observed was 31. Of

note, the Lebanese and Syrian populations do not display

statistical differences with populations from UAE, Qatar

and Oman but do show significant differences with Yemen.

Furthermore, Yemen is the only one to display statistically

significant differences to all other populations in the

analysis. Across all populations, the Lebanese and Syrians

are involved in most of the pairings in which no significant

difference is observed (a¼0.05). In addition to the three

south Arabian populations of Qatar, UAE and Oman, the

Algerian Berbers, Greece and Tajikistan do not exhibit

significant differences to Lebanon and Syria. However,

Turkey and South Iran only exhibit nonsignificant values

in pairwise comparisons with Syria.

Y-STR diversity

Y-chromosome STR diversity was ascertained to generate

haplogroup age estimates. Results from the expansion time

analysis of populations for haplogroups J1-M267, R1a1-

M198, E3b1a-M78 and E3b1c-M123 are provided in Table 3.

Y-STR data for the individuals genotyped are provided

in Supplementary Table 2 (J1-M267), 3 (R1a1-M198), 4

(E3b1a-M78) and 5 (E3b1c-M123). The STR-based diver-

gence times obtained using the method described by

Zhivotovsky et al46 (Table 3) for M123 are comparable

(11.1 ky for UAE and 10.6 ky for Yemen), however, the UAE

and Yemeni haplotypes within this haplogroup are quite

different from each other and did not form a compact

network, suggesting the ancestors for the M123 chromo-

somes in both populations involved independent bottle-

necks followed by similar demographic processes. In

contrast, the J1-M267 haplotypes formed a compact network

across all the three populations and generated older age

estimates for Yemen, Qatar and UAE (9.7, 7.4 and 6.4 ky,

respectively) in comparison to the linear expansion

method (7.11, 4.93 and 5.43 ky, respectively).

Intrapopulation autosomal STR diversity

In order to determine the level of heterozygote deficiency,

possibly resulting from consanguinity, autosomal STR

diversity was examined. Table 4 presents the observed

and expected heterozygosity values of 15 autosomal STR

loci for Kenya, Egypt, Iran, UAE, Oman, Yemen and Qatar

with the Fis values provided in the final column for each

population. A gradient in the number of loci that exhibit

significant (Po0.05) heterozygote deficiency is apparent

moving north then east with lower values from Africa

(1/15 loci for Kenya and Egypt) and higher amounts to the
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west and south from the Iranian Plateau (2/15 in Iran)

toward the southern populations of the Arabian Peninsula

(2/15 for UAE, 3/15 for Oman, 4/15 for Yemen and 8/15 for

Qatar).

Discussion
Analyses of the South Arabian Y-haplogroup substructure as

well as the region’s phylogenetic relationships to neighboring

populations have provided us information on the follow-

ing points: (1) support of the role of the Levant in the

Neolithic dispersal of the E3b1-M35 derivatives, (2)

neolithic spread of the J1-M267 haplogroup from the

north, (3) a high haplogroup diversity shared among

populations along the eastern and western coasts of the

Gulf of Oman and (4) a limited haplogroup diversity in

Yemen also supported by significant heterozygote deficien-

cies at various hypervariable autosomal STR loci.

Distribution of E3b1-M35 derivatives

The presence of signature sub-Saharan African mtDNA

lineages in the south Arabian populations has been

attributed to various waves of gene flow to the region,

including that associated with the East African slave trade.

This is apparent from the exact mtDNA haplotype matches

between lineages in Yemen and East Africa, including those

associated with the Bantu expansion.20 The presence of

the E3a-M2 lineage in Oman (7.4%),4 Yemen (3.2%), UAE

(5.5%) and Qatar (2.8%) could lead to the oversimplified

conclusion that these chromosomes are also a contribution

from the East African slave trade. Mitochondrial DNA

analysis of the Yemen Hadramawt indicates recent gene

flow (B2500 yBP) from Africa to the Arab populations in

part through the slave trade, yet an ancient arrival from

East Africa is responsible for the Y-chromosome haplo-

types.54 The contrast between female- versus male-

mediated gene flow between these two areas can be

attributed to the assimilation of females within the Arabian

populations, whereas the males were often excluded

from reproductive opportunities. The E3b1-M35 sub-haplo-

groups, M123 and M78, are believed to have spread from

East Africa to North Africa and later expanded eastward

through the Levantine corridor and westward to north-

western Africa. Although E3b1a-M78 data suggest that this

dispersal occurred in both directions,4,34,47 E3b1c-M123

disseminated primarily to the east.4 The distribution of the

E3b1-M35 derivatives in Yemen, Qatar and UAE agrees with

their arrival by expansion via the Levantine corridor rather

than through the Horn of Africa. This route is similar to

general patterns of Levantine mtDNA gene flows during

the Upper Paleolithic55 to the Neolithic.5,55 This is

immediately apparent by the M35 profile of several East

African populations. Despite characterizing the East African

populations and persisting even after introduction of

E3a-M2 during the Bantu expansion, E3b1*-M35 is com-

pletely absent from the Omani,4 Qatari and UAE collec-

tions and relatively low in the Yemeni (3.2%). Kenya,

Sudan and Tanzania4,56,57 also lack the E3b1c-M123

derivative that is common in the Near East.12,56 – 58

Furthermore, Ethiopia56 and Somalia21 exhibit high levels

of E3b1a-M78 (22.7 and 77.6%, respectively), which is null

or nearly absent in the two populations closest to the Strait

of Sorrows (Bab-el Mandeb Channel), Yemen (0%) and

Oman (1.7%),4 (w2¼170.618, d.f.¼ 1, Po0.0001 when

combining the frequencies for Ethiopia and Somalia versus

Yemen and Oman).

On the other hand, Cruciani et al57 have postulated that

the E3b1c-M123 clade may have originated in the Near

East, as its presence in East Africa is restricted to Ethiopia

(11.2%). The median expansion time for M123 in Egypt is

Table 3 Y-Haplogroup variance, expansion and coalescence times based on Y-microsatellite loci

Divergence timea (ky)b

Population and Haplogroup N Haplogroup variance Tc (ky)d Mean7SE

Qatar
J1-M267 41 0.14 4.93 7.472.3
R1a1-M198 5 0.19 6.71 14.575.9

UAE
E3l-1a-M78 13 0.14 5.15 4.671.8
E3b1c-M123 5 0.25 8.93 11.173.9
J1-M267 57 0.15 5.43 6.471.4
R1a1-M198 11 0.31 11.11 11.073.3

Yemen
E3b1c-M123 5 0.14 4.93 10.674.1
J1-M267 44 0.20 7.11 9.772.4

aDivergence time based on SNP-STR coalescence method (Zhivotovsky46,51).
bBased on 15 Y-STR loci.
cLinear expansion time assuming continuous growth and a 25-year intergeneration time.
dBased on 8 Y-STR loci in common with previous studies (Cinnioǧlu et al,12; Luis et al,4).
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10.8 ky,4 comparable to the estimated age of M123 STR

variation obtained through the method described by

Zhivotovsky et al46 for UAE (11.173.9 ky) and Yemen

(10.674.1 ky), although allelic differences between these

two populations indicate that they do not share a common

ancestry. Recent archaeological finds supports a trading

relationship between Mesopotamia and the Arabian Gulf

region dating back to the Al Ubaid Period (B7000 yBP) as

evidenced by the excavation of Ubaid pottery from

Mesopotamia in UAE.8 – 10 Ancient maritime trade routes

linking Mesopotamia to the Indus Valley included Dilmun

(the island of Bahrain) and Magan (in the southeastern tip

of the Arabian Peninsula). It is possible that the close ties

between Mesopotamia with both the Nile River Valley and

the ancient Persian Gulf region during the Neolithic

helped disseminate these haplogroups.

UAE is characterized by polymorphic levels of E3b1a-

M78 (7.9%), similar to the Qatari (4.2%; w2¼1.12, d.f.¼1,

P¼0.29), with lower values in Oman4 (1.7%; w2¼5.49,

d.f.¼1, P¼0.02) and greater frequencies in Egypt4 (18%;

w2¼6.73, d.f.¼1, P¼0.01) where it is the highest M35

derivative. The majority of the UAE M78 representatives

belong to the E3b1a3-V22 clade (6.7%). STR networks of

this newly defined marker indicate that it parallels the M78

haplotype cluster d, although some discrepancies exist.36

Based on the distribution and high STR differentiation of

cluster d, its dispersal may have occurred early, the first to

spread the E3b1a-M78 chromosomes to North Africa and

then the Near East.57

Origin of J1-M267

Previous studies on haplogroup J1-M267 have documented

high frequencies of this haplogroup in the areas of Oman

(38%),4 Iraq (33.1%),22 Egypt (20%),4 Lebanon (12.5%)23

and Turkey (8.99%).12 The combination of these data with

the high frequency of J1-M267 in the Yemeni (72.6%),

Qatari (58.3%) and UAE (34.8%) samples examined in the

present study reveals a decreasing frequency moving from

southern Arabia northwards (Spearman’s correlation

coefficient with ranks based on distance from Yemen:

r¼0.9286, n¼8, Po0.01). It is also distributed throughout

the northwestern African populations at considerable

frequencies (35.0 and 30.1% in Algeria and Tunisia,

respectively).58 Based on binary and STR markers, the

greatest degree of differentiation for J1-M267 is detected in

the Levant with two distinct demographic dispersals

generating its current distribution. A higher observed STR

diversity of this clade among Europeans and Ethiopians in

comparison to populations of North Africa points to its

arrival to Ethiopia and Europe during Neolithic times with

a more recent appearance in the latter.58 Semino et al58

describe a YCAIIa22-YCAIIb22 motif in the North African

(490%) and Middle Eastern (470%) J1-M267 representa-

tives that is less frequent in Ethiopia and Europe, postula-

ting that the dispersal of the M267-YCAIIa22-YCAIIb22T
a
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clade occurred during the Arab expansion in the seventh

century A.D.

Median BATWING expansion times based on Y-STR

data for the Omani (2.3 ky; 95% CI: 0.6–29.2) J1-M267

chromosomes4 indicate a more recent arrival to the South

Arabian populations as compared to the older expansion

times obtained for the Egyptian (6.4 ky; 95% CI: 0.6–

278.5)4 and Turkish (15.4 ky; 95% CI: 0.4–604.8)12 repre-

sentatives of this haplogroup. Conversely, in the present

study, Y-STR age estimates based on the method described

by Zhivotovsky et al46 generated much older values for the

J1-M267 haplogroup in Yemen, Qatar and UAE (9.772.4,

7.472.3 and 6.471.4 ky, respectively) than seen in the

Omani,4 consistent with an earlier arrival to the region

during the Neolithic. The data suggest expansion from the

north during the Neolithic (or perhaps more recently),

which is also reflected in the lower STR variances in

southern Arabia (0.14 for Qatar, 0.15 for UAE, 0.20 for

Yemen and 0.27 for Oman4 versus 0.31 in Egypt4 and 0.51

in Turkey12). Subsequently, a series of recent demographic

events may account for the high haplogroup frequency of

J1-M267 in the populations from the present study.

Implications of Y-chromosome distribution in Arabia

Overall, the southern Arabian populations segregate to-

gether at an intermediate position with populations from

the Levant in the MDS plot, appropriate considering their

strategic geographic location at a major bidirectional

gateway connecting Africa and Eurasia. Based on the

AMOVA, it is also possible to deduce that the overall

Y-haplogroup substructure observed in these regions is

affected more by geography (fct¼0.16) than by language

(fct¼0.08). Upon classifying the populations based on

language family affiliations, the variance among popula-

tions within groups is greater (fSC¼0.14) than the fct

attributable to variation among groups. This difference can

be expected since the Afro-Asiatic family encompasses a

large variety of languages. Pairwise comparisons of the 32

populations based on Y-haplogroup frequency data

(Supplementary Table 1) revealed that only 13 of 90

comparisons display nonsignificant differences within the

Afro-Asiatic family, leaving a total of 77 pairwise compar-

isons generating significant differences. The 13 pairs with

nonsignificant differences involve the Levantine popula-

tions of Lebanon and Syria possibly as a result of their

central position in relation to other Afro-Asiatic groups,

whereas the remaining three include the populations

within northwest Africa.

Studies focused on this crossroads for human move-

ments have identified geographical barriers that may have

limited gene flow with neighboring regions. Specifically, a

study based on 15 autosomal STR loci detected a concen-

tration of genetic homogeneity within the Near East,

suggesting that the Saharan desert, the Iranian deserts

and the Hindu Kush Mountains may have acted as

obstacles for dispersal.19 The portrayal of the Dasht-e Kavir

and Dash-e Lut deserts of Iran as barriers to gene flow has

been described in the context of the R1a1-M198 line-

age14,16 – 18 as well as in the dissemination of R1b1a-M269

within Iran.14 Moreover, an admixture analysis by Regueiro

et al14 identified the harsh, mountainous terrain in North-

east Turkey as well as the Hindu Kush Mountains as

limiting factors of gene flow to the Iranian Plateau,

whereas the Balochistan acted as a possible conduit for

human dispersals. This coastal region that encompasses

parts of South Iran, Afghanistan and Pakistan may have

provided a unique corridor along the Gulf of Oman.

To examine the degree and geographic extent of genetic

homogeneity within the Gulf of Oman, the frequency of

the predominant haplogroups were contrasted among the

populations in the region. A w2-test on the haplogroup

frequencies of Oman, UAE, South Iran14 and South

Pakistan30 indicates that the most frequent haplogroups,

E (w2¼ 20.836, d.f.¼3, Po0.0001), J (w2¼8.677, d.f.¼3,

P¼0.0339) and R (w2¼40.142, d.f.¼ 3, Po0.0001) are not

evenly distributed among the four populations. As the

MDS plot displayed a close affiliation between South

Pakistan and North Iran and the former segregated away

from the Gulf of Oman populations, the w2-test was

repeated excluding South Pakistan. Although statistically

significant differences are still apparent for haplogroup E

(w2¼10.170, d.f.¼2, P¼ 0.0062) and R (w2¼10.560,

d.f.¼2, P¼ 0.0051), J (w2¼2.577, d.f.¼ 2, P¼0.2757)

exhibits an even distribution among Oman, UAE and

South Iran. However, a greater homogeneity is observed

among the South Arabian populations of Oman, UAE and

Qatar for haplogroups E (w2¼2.249, d.f.¼2, P¼0.3248), J

(w2¼4.831, d.f.¼2, P¼0.0893) and R (w2¼0.308, d.f.¼2,

P¼0.8573). The significant differences in frequency of

haplogroups result in detectable clines moving from the

South Arabian populations to South Iran and then South

Pakistan (E: 18.8, 6.8 and 3.3%; J: 50.4, 35.0 and 25.3%;

and R: 11.2, 25.6 and 46.2% for South Arabia, South Iran14

and South Pakistan,30 respectively).

In addition, South Pakistan, South Iran, UAE, Oman and

Qatar (although to a lesser extent) share a similar

Y-haplogroup substructure with clinal decreases in diversity

detected as one moves west to Africa, north to the Levant

and Caucasus and east to south and central Asia (Figure 2).

Although the Hindu Kush Mountains and Iranian deserts

may have played a significant role in encapsulating the

region and limiting gene flow,14,25 the coastal area may

have served as a unique corridor facilitating dispersals into

and out of the region at various times in recent human

evolution.

At another extreme, the haplogroup distribution of

Yemen shows very limited variation, particularly when

compared to neighboring populations, Oman and UAE (3

versus 11 haplogroups each), whereas Qatar is intermediate

with a total of seven haplogroups, four of which display
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AM Cadenas et al

383

European Journal of Human Genetics



frequencies of less than 3.0%. Although Qatar does not

approximate the lack of diversity seen in Yemen, the two

populations display affinities that are apparent in the MDS

plot, in which populations of the Levant are interspersed

among the South Arabian populations, with Qatar and

Yemen segregating apart from both UAE and Oman.

Regional autosomal STR analysis

To investigate the underlying reasons for the limited

Y-chromosome diversity in Yemen, the observed hetero-

zygosity values of 15 highly polymorphic autosomal STR

loci were calculated using samples from Kenya,19 Egypt,19

Oman,19 Yemen,19 Iran,25 Qatar26 and UAE (Cadenas,

unpublished results) and are presented in Table 4. Owing

to the large number of alleles that exist at each locus,

obtaining heterozygote deficiencies may be indicative of a

high degree of consanguinity within populations. Qatar

possesses 8 out of 15 loci with significant heterozygote

deficiency (Po0.05), approximated by Yemen (4 loci) and

Oman (3 loci), whereas UAE and Iran display only two loci

followed by Egypt and Kenya with one locus each.

A series of recent demographic events may offer an

explanation for the Y-haplogroup distribution observed in

Yemen. The J1-M267 Y-pattern in particular may have

arisen as a result of a founder effect followed by genetic

drift. Furthermore, nonrandom-mating practices are

common in the area, with cultural beliefs that support

polygamy and patrilocal behaviors that perpetuate specific

male lines within the region. In addition, consanguineous

marriages, particularly among first cousins, are common in

the Middle East due to Muslim tradition. This form of

inbreeding can serve to propagate a specific patrilineage.

Although a combination of these processes probably

played a part in forming the Y-haplogroup substructure

seen in Yemen, based on the regional autosomal STR

analysis, it is likely that inbreeding may have been a

significant contributing factor.

A study performed within Sana’a City, Yemen revealed a

incidence of consanguinity of 44.7%, with first-cousin

marriages comprising 71.6%, and an average coefficient of

inbreeding (the probability of an individual having two

alleles identical by descent at a given locus) of 0.02442,59

almost double that of the Egyptian population (0.01)60 and

four times that of the Turkish population (0.0064532).61

Similar studies conducted in Qatar indicate a rate of

consanguinity of 54.0% (first cousin marriages accounting

for 34.8%) and a coefficient of inbreeding of 0.02706,62

whereas comparable consanguinity values were observed

in UAE (50.5%)63 and Oman (35.9%).64 These figures are

representative of the region as a whole where consangui-

neous marriages are prevalent (28.96% in Egypt,60 33% in

Syria,65 51.2–54.4% in Jordan,66,67 57.7% in Saudi Arabia68

and 54.4% in Kuwait69).

It is significant that in spite of these characteristics,

which tend to temper genetic diversity, high Y-chromo-

some haplogroup variability is exhibited in the Gulf of

Oman coastal crescent. Patrilineal systems, polygamy and

consanguinity are forces that will favor limited diversity

along the lines of what is seen in Yemen. It is likely that the

region’s continued critical role in trade has rendered it an

important point of contact between populations and a

target of attacks in attempts to gain control of trade from

the Persian Gulf. Furthermore, Oman’s role in the East

African slave trade has been well documented and

supported by previous studies4,5,54 and may account, at

least partially, for the greater diversity it displays.

Conclusion
A comparison of Y-haplogroup substructure of the popula-

tions surrounding the Gulf of Oman reveals similarities

among them with detectable clines in haplogroup fre-

quencies. This can be attributed to the existence at

different times of a coastal corridor along the Gulf of

Oman that may have facilitated dispersals into and out of

the area. Chromosomes like E3b1c-M123 support archaeo-

logical data linking the Fertile Crescent with trading cities

along the Persian Gulf, whereas derivatives of E3b1-M35

point to a Neolithic arrival to southern Arabia via the

Levant. The limited variability seen in Yemen (and to some

extent Qatar) does not mirror the diversity observed in the

coastal populations of UAE, Oman, South Iran and South

Pakistan. An analysis of heterozygosity using hypervariable

autosomal STR loci indicates that both Yemen and Qatar

display a deficiency in observed heterozygosity that may be

affected to some extent by high rates of consanguineous

marriages in the region. In addition, a string of relatively

recent events may have maintained Oman and UAE in

close contact with other cultures, including attempts to

gain control of the Persian Gulf and Oman’s involvement

in the East African slave trade.
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