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Most pooling variation in array-based DNA pooling is
attributable to array error rather than pool
construction error

Stuart Macgregor*,1

1Genetic Epidemiology, Queensland Institute of Medical Research, Brisbane, Australia

Genome-wide association (GWA) approaches are important in complex disease gene mapping studies but
are often prohibitively expensive. Array-based DNA pooling has been shown to offer substantial cost
savings compared with individual genotyping. This reduced cost potentially brings well-powered GWA
studies well within the reach of most laboratories. The main factor, which affects the efficiency of pooling
compared with individual genotyping is the magnitude of the pooling error variance. By examining
variation between and within pools it is shown that most of the error associated with pooling is
attributable to array variation not pooling construction variation (assuming the pools are not small and the
pools are accurately constructed). With Affymetrix HindIII 50K arrays used here the array-specific variance
is seven times the pooling construction variance. This has important implications for optimal study design
for array-based pooling. Given carefully constructed pools, resources should be allocated to increasing the
number of arrays per sample rather than to constructing multiple pools.
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Introduction
Genome-wide association (GWA) is a popular technique for

disease gene mapping of complex traits. The availability of

microarrays has made GWA technically possible but it is

prohibitively costly for many researchers. A cost efficient

alternative to individual genotyping is DNA pooling,1 an

approach recently extended to use arrays.2–4 With array-

based pooling, well-powered GWA studies can be con-

ducted at vastly reduced cost, bringing them well within

the reach of most laboratories.2 The primary factor which

affects the efficiency of pooling compared with individual

genotyping is the magnitude of the pooling variance.

Appreciation of the sources of variation is critical to the

efficient allocation of resources in terms of the number of

arrays and the number of pools used.

Previously, Macgregor et al2 presented pooling data using

Affymetrix arrays but did not address the composition of

the pooling variance. Here is shown that by examining

variation between and within pools, it is possible to

partition the variation into a component attributable to

error on the arrays (ie, ‘technical’ error) and a component

owing to errors in pooling construction. This demonstrates

that most of the error in pooling is attributable to variation

on the arrays and that the error introduced when pool are

carefully constructed is of substantially less importance.

For optimal efficiency, resources should be allocated in

increasing the number of arrays per pool rather than

constructing multiple pools.

Materials and methods
Data

Full details of the data used are given elsewhere.2,5 In brief,

genomic DNA was extracted (using the same method
Received 4 October 2006; revised 16 November 2006; accepted 17

November 2006; published online 31 January 2007

*Correspondence: Dr S Macgregor, Genetic Epidemiology, Queensland

Institute of Medical Research, Herston Road, Brisbane 4029, Australia.

Tel: þ 61 7 3845 3563; Fax: þ61 7 3362 0101;

E-mail: stuart.macgregor@qimr.edu.au

European Journal of Human Genetics (2007) 15, 501–504
& 2007 Nature Publishing Group All rights reserved 1018-4813/07 $30.00

www.nature.com/ejhg



throughout) from peripheral venous blood samples col-

lected in the period 1997–2003. Two DNA pools (case and

control) of 384 individuals were constructed by mixing

equal amounts of adjusted DNA samples. Three Affymetrix

Genechip HindIII arrays (56494 SNPs) were applied to each

pool.

Statistical methods
Sources of error with pooling With pooling there are a

number of sources of error. The sample frequency estimate,

p̃a, from pooled data can be written (cf. appendix 1 in

Macgregor et al2)

~pa ¼p̂a þ epool array þ epool construction

¼pa þ eb þ epool array þ epool construction

where pa is the true population frequency, p̂a is the estimate

of the frequency in that sample (this does not equal true

population frequency, pa, because of binomial sampling

error), eb is the binomial sampling error, epool_array is the

error associated with estimating the frequency from the

pool on an array and epool_construction is the error associated

with creating a pool.

Different estimates of pooling variance
Estimates of pooling variance using a single sam-
ple There are two methods for estimating the array

variance from a single sample; the first method is simplest

to outline and applies straightforwardly to the case where

there are two array measures from same pool. The second

method is given subsequently. With case pool sample

estimates p̃ai (for controls replace a with u) on array i

(i¼1,2)

~pai ¼ p̂a þ epool array i

where p̂a is the true frequency in that set of cases. The

variance of the difference is

varð~pa1 � ~pa2Þ ¼ varðepool array 1 � epool array 2Þ
¼ 2�varðepool arrayÞ

and var(epool_array) is estimated using

varðepool arrayÞ ¼ varð~pa1 � ~pa2Þ=2

where var(p̃a1�p̃a2) is obtained by calculating the average of

the squared differences between p̃a1 and p̃a2 across the full

set of SNPs on the array. var(epool_array) is assumed constant

across SNPs. When there are more than two arrays,

multiple pairings of array measures are possible and the

best estimate of var(epool_array) is the average over all pairs.

An alternative method, which applies immediately to

the case where there are more than two arrays per pool, is

to fit an analysis of variance to the set of p̃ai values. This

second method gives similar results to the first method on

the data used here (three arrays per pool).

In Macgregor et al2 the three arrays (per case or control

pool) were taken together and a quality control (QC) step

applied. This step discarded SNPs with o8 probe measure-

ments available across the three arrays. Here the arrays are

considered separately and a per-array QC step implemen-

ted; this involved discarding SNPs with o2 probe measure-

ments on the array under study.

Estimates of pooling variance using cases and con-
trols Macgregor et al2 describe a method that estimates

the pooling variance from the cases and controls (summar-

ized in appendix in supplementary online material). Un-

like the case described above for estimating the pooling

variance using a single sample, when cases and controls are

used there is an additional component of variation owing

to random (binomial) sampling. This sampling is explicitly

accounted for the method described by Macgregor et al.2 In

this case, the two possible sources of pooling error are

confounded and it is only possible to estimate a single

variance (containing both the array pooling variance and

the pool construction variance); this is henceforth referred

to as var(epool_total).

To allow a suitable comparison with the estimates of

pooling variance from a single pool, the estimate of

var(epool_total) was calculated by considering each of the

nine possible pairwise comparison between the case and

control pools (ie, case pool array 1 vs control pool array 1,

case pool array 1 vs control pool array 2, y). The overall

estimate of var(epool_total) was then averaged over all pairs.

The same QC step that was applied to the single sample

analysis was used. The estimate of var(epool_total) will not

equal the pooling variance estimate reported in Macgregor

et al2 (which used the same data as used here but calculated

the pool variance on all three arrays) because in that case

the estimate of var(epool_total) was a compound of the array-

specific error (which is three times smaller with three

arrays than with one array) and the pooling construction

error (which is unaffected by the number of arrays).

Furthermore, as above, a slightly different QC step was

used when all three arrays were taken together.

Pooling construction variance estimates var

(epool_construction) cannot be calculated directly from

these data. However, as there are separate estimates of

var(epool_array) (from single pools) and var(epool_total) (from

case–control differences), var(epool_construction) can be esti-

mated by subtraction

varðepool constructionÞ ¼ varðepool totalÞ � varðepool arrayÞ

An alternative estimate of var(epool_construction) can also be

calculated from the two possible estimates of var(epool_total).

The first estimate, denoted var(epool_total_arrays_pairwise), from

the average of the nine pairwise combinations given above

yields an estimate of var(epool_array)þ var(epool_construction).

The second estimate, denoted var(epool_total_3_arrays), from

the three case pool arrays together vs the three control pool

array together yields an estimate of var(epool_array)/
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3þ var(epool_construction) (this was what was calculated in

Macgregor et al2). Re-arranging the previous two equations

(solving the system of equations) yields

varðepool constructionÞ ¼ 0:5�f3�varðepool total 3 arraysÞ
� varðepool total arrays pairwiseÞg

Calculations were carried out using R.6

Results
The estimates of var(epool_array) were 0.00118 and 0.00133

for control and case pools, respectively. The overall estimate

of var(epool_array) over both pools was 0.00126. The esti-

mate of var(epool_total) was 0.00144 (average over all nine

possible pairs). Subtracting the estimate of var(epool_array)

from var(epool_total) gives an estimate of var(epool_construction)

of 0.00018. In terms of variance explained, this suggests

that only 12.5% of the variance in pooling is due to pooling

construction. In all 87.5% of the variance is due to array

variation.

The pooling variance estimate from Macgregor et al2 was

0.00058, based on three arrays. By contrasting this estimate

with the one obtained from the nine possible pairwise

combinations of case–control, an alternative estimate of

var(epool_construction) is 0.00015. In this case a slightly

different QC step is applied so this may account for the

slight difference between this estimate and the one in the

previous paragraph.

Discussion
The success of array-based pooling depends upon reducing

the overall pooling error and the results here suggest

that the majority of this error arises as a result of array-

specific variability. To reduce the array-specific variance

several arrays should be used per pool. Based on

the variance seen in the data used here, up to seven

Affymetrix arrays could have been used per pool before the

pooling construction variance would have become larger

than the array-specific variance. In some previous array-

based pooling studies,4,7 smaller numbers of individuals

(N¼ 10–20) were placed in each pool. This contrasts with

the large number (N¼384) used here. The work presented

here suggests that, as the pooling error is largely array-

specific error, using larger numbers of arrays on smaller

numbers of pools (with more individuals per pool) will be

more effective than smaller numbers of arrays on larger

numbers of pools. As discussed in Macgregor et al,2 the

overall optimal study design will varying depending on the

size of the overall pooling variance relative to the binomial

sampling variance.

The estimates of var(epool_construction) were relatively small

but replication of this result in other pools will be important.

For the experiment described here, pools were carefully

constructed following estimation of DNA concentrations in

a step down procedure to achieve final DNA concentrations

of 25ng/ml (70.55) before pooling.5 It is difficult to know

from a single data set how much variability there will be in

the estimate of var(epool_construction) and the overall levels of

pooling construction variance will likely vary across labora-

tories. As the estimate of var(epool_construction) calculated here

was based on a limited number of arrays, the confidence

interval on the estimate of var(epool_construction) may not be

particularly narrow.

In the above analysis the focus was on array variation

being the source of technical variation. There are a number

of technical steps necessary to produce data from pools and

it is likely that both PCR variation and hybridization

variation contribute to the overall technical variation. An

experiment, which recycled the reaction product for

multiple hybridizations would allow partition of the

technical variation.

A number of assumptions were made in the analysis (see

also Macgregor et al2 for further coverage). Firstly, all SNPs

were assumed to be unassociated with disease; this will

hold for virtually all SNPs. Secondly, the pooling variance

was assumed to be constant across SNPs on the array; no

strong evidence was found for systematic variation,

particularly for SNPs with allele frequencies in the range

of primary interest (0.1–0.9). Finally, unequal amplifica-

tion of alleles was assumed to not affect results; the focus

was on the difference in allele frequencies (between case/

control or between arrays 1 and 2 on a given pool, and so

on) so this is unlikely to be an issue.
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