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Methods for the selection of tagging SNPs: a
comparison of tagging efficiency and performance
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There is great interest in the use of tagging single nucleotide polymorphisms (tSNPs) to facilitate
association studies of complex diseases. This is based on the premise that a minimum set of tSNPs may be
sufficient to capture most of the variation in certain regions of the human genome. Several methods have
been described to select tSNPs, based on either haplotype-block structure or independent of the
underlying block structure. In this paper, we compare eight methods for choosing tSNPs in 10
representative resequenced candidate genes (a total of 194.2 kb) with different levels of linkage
disequilibrium (LD) in a sample of European-Americans. We compared tagging efficiency (TE) and
prediction accuracy of tSNPs identified by these methods, as a function of several factors, including LD
level, minor allele frequency, and tagging criteria. We also assessed tagging consistency between each
method. We found that tSNPs selected based on the methods Haplotype Diversity and Haplotype r2

provided the highest TE, whereas the prediction accuracy was comparable among different methods.
Tagging consistency between different methods of tSNPs selection was poor. This work demonstrates that
when tSNPs-based association studies are undertaken, the choice of method for selecting tSNPs requires
careful consideration.
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Introduction
Both linkage and association studies are employed to

investigate the genetic basis of complex diseases such as

atherosclerotic cardiovascular disease. Based on the pre-

mise that association mapping has greater power in

identifying genetic determinants of complex diseases,1

this study design is being increasingly used. Commonly,

association studies test putative functional single nucleo-

tide polymorphisms (SNPs) within candidate genes and

regions – the so-called ‘direct’ approach.2 An alternative is

the ‘indirect’ approach (ie, a linkage disequilibrium (LD) –

based approach), in which a subset of markers in a region

of interest are selected from small panels of subjects and

then used in large-scale association analyses.

The concept of LD is key to designing ‘indirect’

association studies for complex diseases. Regions with

extensive LD, i.e., haplotype blocks, have been found

interspersed with regions of medium and low LD in the

human genome.3,4 One way to reduce genotyping effort

for association mapping of complex diseases is the use of

haplotype tagging SNPs (htSNPs) or tagging SNPs (tSNPs).

The two terms, htSNPs and tSNPs, refer to two different

strategies for choosing the optimal minimum subset of

SNPs from the entire set of SNPs. htSNPs are selected based

on the haplotype-block model of LD pattern in a region of

interest and represent the common haplotypes inferred

from the original set of SNPs.5 On the other hand, tSNPs

are selected based on measures of association, such that a

tSNP predicts partially or completely the state of other

SNPs.6
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Thus far, several methods to select htSNPs or tSNPs have

been described, and these can be broadly classed into four

categories. First, there are the methods based on defining

how well a subset of SNPs captures the variation in the

complete set.5 –11 The second category of methods is based

on principal component analysis (PCA) to reduce the

dimensions of complete sets of SNPs.12,13 The third

category is based on association or correlation between

SNPs (ie, LD).14,15 The fourth category includes several

methods, an example being a method based on set theory

that recursively searches the minimal set of SNPs with

a given function.16,17 These four categories can also be

grouped into haplotype-block-based methods5,7 –9,12 and

haplotype-block-free methods.6,11,15 The tSNPs derived

from these two classes give different genome coverage

because of the varying ‘blockiness’ in the human gen-

ome.18 In this paper, we use the term tSNPs to represent an

‘optimal’ selection of a subset of SNPs from the original set

of SNPs, identified using either haplotype-block-based- or

haplotype-block-free methods.

A recent review19 described the methodological and

conceptual differences between the available tagging

algorithms. However, no systematic comparison of the

available methods for selecting tSNPs has been performed,

and a consensus method for choosing tSNPs has not been

established. The researcher has been offered little guidance

in the choice among these methods, that is, which method

for choosing tSNPs is most appropriate for a particular

candidate gene-based association study? We attempted to

compare several leading tSNPs selection methods in 10

representative gene regions by using resequenced genotype

data (pga.mbt.washington.edu). We assessed tagging effi-

ciency (TE) and prediction accuracy of tSNPs derived by

these methods. In addition, we investigated the impact of

minor allele frequency (MAF) cutoff, tagging criteria, and

LD level on tSNPs selection, as well as the tagging

consistency between different methods.

Materials and methods
Gene selection

Sequence data for 87 candidate genes for atherosclerotic

cardiovascular diseases from 23 European-Americans were

downloaded from the SeattleSNPs database (http://

pga.mbt.washington.edu) on March 11, 2005.15,20 Ten

representative genes (Table 1) were selected for comparing

different tSNPs selection methods based on the following

criteria: (1) LD level varied from strong LD (D040.8), to

moderate LD (0.4 oD0r0.8), and to weak LD (D0r0.4).21 A

measure of LD (D0) was calculated using LDA software,22

and the level of LD was assessed by use of sliding-window

plots of average D0 in each gene (Figure 1); (2) the length of

the genes was close to the mean length of the 87 genes

(mean7SD of sequenced length in the 87 candidate

genes¼ 21.3713.4 kb and median¼17.7 kb).

Methods for the selection of tSNPs

We compared eight published methods of identifying

tSNPs. Most of the methods are based on searches to

evaluate subsets of SNPs using different measures and

include All common haplotypes,7,8 Haplotype diversity,5

Coefficient of determination (R2
h),

10 Haplotype entropy

(Entropy),23 and Haplotype r2 (TagIT).11 Another set of

methods is based on PCA, for example, the method

described by Lin and Altman.13 Carlson et al15 developed

the method LD r2 (based on pairwise LD), in which the

maximally informative site and all associated sites are

grouped into a bin. Sebastiani et al17 described a method

(BEST) in which all optimum fully informative tSNPs are

generated based on set theory. A brief summary of each

method, including measures or statistics, comments and

original references, is presented in Supplementary Table 1.

Haplotype-block definitions

The above eight methods can also be classified as haplotype-

block-based methods (eg, All common haplotypes, Haplo-

type diversity, R2
h, and Entropy) and haplotype-block-free

methods (eg, TagIT, LD r2, PCA, and BEST). Haplotype blocks

have been defined based on diversity,7,8 LD,3 and recombi-

nation.24 Comparisons of haplotype blocks based on these

definitions have revealed similarity between the LD-based

method and the recombination-based method.25–27

We choose to define haplotype blocks based on LD when

haplotype-block-based tSNPs selection methods were em-

ployed. The LD-based haplotype-block definition requires

that the proportion of SNP pairs with strong D0 (absolute

D0
Z0.70) must account for at least 95% of pairs of SNPs.3

Selection of tSNPs under different MAF and tagging
criteria

The following programs were available from the authors’

websites: Hapblock,28 ldSelect for the method LD r2,15

Table 1 LD level, number of SNPs, and singletons in 10
representative genes

Genea LD level Length (kb) SNPs (n) Singletons (n)

DO High 17.8 17 2
IL1A High 18.4 47 3
MGP High 9.9 11 0
VKORC1 High 11.2 13 3
ALOX12 Moderate 18.6 55 9
SELL Moderate 24.8 95 23
VCAM1 Moderate 22.9 38 10
F2 Weak 22.1 52 9
F10 Weak 29.5 61 16
ICAM1 Weak 19.0 35 11

aGene abbreviations: DO, dombrock blood group; IL1A, interleukin 1
a; MGP, matrix G1a protein; VKORC1, vitamin K epoxide reductase
complex, subunit 1; ALOX12, arachidonate 12-lipoxygenase; SELL,
selectin L; VCAM1, vascular cell adhesion molecule 1; F2, coagulation
factor II; F10, coagulation factor X; ICAM1, intercellular adhesion
molecule 1.
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TagIT,11 and BEST.17 Hapblock integrates several methods,

including All common haplotypes, Haplotype diversity, R2
h,

and Entropy. We implemented the PCA algorithm13 in

MatLabs, using varimax-rotation method to map tSNPs

after eigenSNPs were mathematically selected.

We used tagging criteria as a measure for quantifying

the proportion of variation captured by a tSNPs set. The

tagging criteria of 0.70, 0.80, and 0.90 at MAFs of 0.10 and

0.20 were assessed in six methods, including Haplotype

diversity,5 Entropy,23 R2
h,

10 LD r2,15 Haplotype r2 (Ta-

gIT),11,29 and PCA.13 For each method, combinations of

parameters of tagging criteria and MAF were input. For the

remaining two methods, that is, All common haplotypes7,8

and BEST,17 there was no need to input the tagging criteria.

We compared TE, prediction accuracy, and tagging con-

sistency between different tSNPs selection methods as

described below.

Tagging efficiency (TE)

TE was defined based on Ke et al30 as

TE ¼ n=nh ð1Þ

where nh is the number of tSNPs and n is the total number

of SNPs under different MAF cutoffs. The measure of TE

provides an estimate of the savings in genotyping offered by

tSNPs and is expected to vary under different MAF cutoffs.

We also selected a 100 kb ENCODE region (ENCyclopedia

Of DNA Elements, a project that aims to produce a dense

set of genotypes across large genomic regions) on chromo-

some 7q21.13 (www.hapmap.org) to test the effect of

sample size (ie, n¼24, 48, 72, and 90) on TE.

Prediction accuracy

Halperin et al31 have proposed a measure of prediction

accuracy to evaluate the quality of tSNPs and described its

utility in selecting tSNPs given the genotype information

of SNPs from a set of unrelated individuals. The measure

aims to maximize the expected accuracy of predicting

untyped SNPs, given the unphased information of the

tSNPs.31 Formally, for a given set of SNPs t, the objective is

to find a set of tSNPs S of size t and a prediction function f

such that the prediction error is,

Z ¼
Xm

j¼1

Pr½fjðZSðgÞÞ 6¼ gðjÞ� ð2Þ

where, ZS is the restriction of the genotype to the tSNPs

position, and g(j) is the j-th SNP in genotype g. We

calculated the prediction accuracy of the sets of tSNPs

generated by the eight methods under two MAF in 10

genes using the program Gerbilview.32

Tagging consistency

Let set1 and set2 denote two sets of tSNPs derived either

from one population using two different methods or from

two populations using one method. To quantify the

consistency or similarity between the sets of tSNPs, we

used the methods of Schwartz et al27 and Liu et al33 that

assess whether or not tSNPs from two different methods or

two populations coincide. The P-value (P(set1, set2)) is from

Fisher’s exact test for the null hypothesis that the two

tSNPs sets are independent.

Pðset1; set2Þ ¼
XminðB1;B2Þ

i¼m

ðB1

i ÞðL	B1

B2	i Þ
ðLB2

Þ
ð3Þ

where B1, B2 are the numbers of tSNPs in set1 and set2,

respectively, m is the number of tSNPs shared by set1 and

set2, and L is the total number of SNPs in the regions under

study. The consistency measure (C) is defined as the

negative logarithm of the P(set1, set2) value,

C ¼ 	 logPðset1; set2Þ: ð4Þ

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

High LD

Distance (kb)

D
’

0.0

0.2

0.4

0.6

0.8

1.0

D
’

0.0

0.2

0.4

0.6

0.8

1.0

D
’

DO
IL1A
MGP
VKORC1

0 5 10 15 20 25

Moderate LD

Distance (kb)

ALOX12
SELL
VCAM1

0 5 10 15 20 25

Low LD

Distance (kb)

F2
F10
ICAM1

Figure 1 Sliding window plots of average LD measure (D0) in the 10 genes included in the present study. Average D0 was calculated from all SNP
pairs in 5 kb sliding windows (1 kb increment between windows starting from 2.5 kb). If there were no SNPs in a given window, the D0-value was
assigned as a value of ‘not available’. Different LD levels were present in different gene regions: strong LD (D040.8), moderate LD (0.4 oD0r0.8) and
weak LD (D0r0.4).

Methods for the selection of tagging SNPs
K Ding and IJ Kullo

230

European Journal of Human Genetics



Results
The eight methods of tSNPs selection were compared in 10

genes (Table 1). These 10 genes had different levels of LD

and their genomic length was close to the average length of

the 87 candidate genes for atherosclerotic cardiovascular

disease. The LD pattern of these genes for European-

Americans is illustrated in Figure 1, indicating strong LD in

DO, IL1A, MGP, and VKORC1, moderate LD in ALOX12,

SELL, and VCAM1, and weak LD in F2, F10, and ICAM1.

Tagging efficiency

For each method of selecting tSNPs, we defined TE as the

total number of markers in the region of interest divided by

the number of tSNPs chosen by a particular method, based

on Eq. (1). The TE of the eight tSNPs selection methods

across different gene regions with different levels of LD,

using two MAF cutoffs (0.10 and 0.20) and tagging

criterion of 0.90, is shown in Table 2 and Supplementary

Figure 1. The mean TE varied (from B 2 to B 25)

depending on the method of tSNPs selection and the

LD level of the gene region. The overall TE was highest for

Haplotype diversity and TagIT. As expected, the LD level in

the gene regions affected TE; for most tSNPs selection

methods, TE was higher in strong LD regions than in

regions of moderate LD and weak LD. The variance in TE

in the high LD regions was weakly related to method of

tSNPs selection (two-way analysis of variance (ANOVA),

P¼0.090) but not to MAF (P¼0.998). In the moderate and

low LD regions, the variance in TE could be attributed to

the method used for tSNPs selection (P¼0.028 and

P¼0.003 in moderate and low LD regions, respectively)

as well as MAF (P¼0.002 and P¼0.009 in moderate and

low LD regions, respectively).

To investigate whether TE is significantly affected by

tagging criteria under the two MAF, we performed ANOVA

for six methods (no tagging criteria were input for methods

of All common haplotypes and BEST; see Supplementary

Table 1) under different MAF cutoffs and three different

tagging criteria (0.70, 0.80, and 0.90). TE was significantly

affected by tagging criteria, for several methods, especially

PCA, TagIT, Entropy, and Haplotype diversity, in regions of

high LD (Supplementary Table 2). In regions of moderate

and low LD, TE was significantly affected by tagging

criteria for the methods PCA and TagIT.

We also tested the effect of sample size (ie, n¼24, 48, 72,

and 90) on TE in the 100 kb ENCODE region on chromo-

some 7q21.13. No significant difference in TE was noted at

different sample sizes (Supplementary Figure 2).

Prediction accuracy of tSNPs

The prediction accuracy of tSNPs for gene regions with

different LD levels, using the two MAF cutoffs (0.10. and

0.20) and tagging criterion of 0.90 is shown in Table 3 and

Supplementary Figure 3. The prediction accuracy of tSNPs

was comparable among different methods in gene regions

with different LD levels. If we set prediction accuracy of

0.90 as a threshold in regions with high or moderate LD,

the prediction accuracy under different MAF cutoffs

exceeded or approached the threshold for all eight

methods. There was no significant difference in prediction

accuracy of tSNPs under the two MAF cutoffs in any of the

eight methods. No significant differences in prediction

accuracy were noted among different methods at various

LD levels (P40.05, two-way ANOVA). Thus, neither the

choice of tSNPs selection method nor level of LD affected

the prediction accuracy.

Tagging consistency

In general, different methods for selecting tSNPs generated

different sets of tSNPs. To quantify and examine the

consistency between tSNPs generated by different methods

of tSNPs selection, we used the tSNPs similarity measure in

Eq. (4) and the test of significance in Eq. (3). We compared

the results generated under a MAF cutoff of 0.10 and

tagging criterion of 0.90. There was greater similarity

between tSNPs identified by the methods All common

haplotypes, Entropy, R2
h, and BEST, than between the

remaining methods. Supplementary Table 3 summarizes

the statistical tests of the null hypothesis of independent

tSNPs from pairwise comparison of the methods All

common haplotypes, Entropy, R2
h and BEST. It can be seen

that most of the pairwise comparisons among these four

methods provided evidence against the null hypothesis of

independent SNP selection by different methods (Po0.05).

When comparing regions with different levels of LD, we

observed that the fraction of significant results of pairwise

comparisons decreased with decreasing LD level. In case of

IL1A (high LD), six out of six pairwise comparisons were

significant compared with three out of six in the ALOX12

gene (moderate LD), and two out of six in the F2 gene

(weak LD).

Computational cost

Finally, we compared the computational cost of each

method of tSNPs selection. Five methods (All common

haplotypes, haplotype diversity, Entropy, LD r2, and R2
h)

were run under Linux with an AMDs athlon 2800þMP

CPU and the other three methods (BEST, PCA, and TagIT)

were run under a Windows XPs system with a 2.8GHz

CPU. The computational cost was comparable at MAF 0.10

and 0.20 among the different methods. For example, in the

ALOX12 gene, with MAF¼0.10 and tagging criterion 0.90,

R2
h and Entropy took o10min to get the results using the

Hapblock program, whereas the other methods took

o1min. However, when comparing tSNPs selectionmethods

in larger genomic regions (such as the 500 kb ENCODE

regions), the computational burden for the methods R2
h,

Entropy, and BEST was significant. For example, the

runtime for the program BEST grew exponentially and we
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were unable to get results even in 2 weeks for a 227 (marker

number) by 180 (haplotype sample size) matrix under a

windows server (2GHz CPU and 3.50GB of RAM).

Discussion
In this paper, we compared tagging efficiency (TE),

prediction accuracy, and tagging consistency of tSNPs

Table 2 Tagging efficiency of the eight methods of tSNPs selection

Methods

Gene MAF a Hap.Div ACH Entropy R2h TagIT PCA BEST LD r2

DO 0.10 15.00 7.50 3.00 3.75 5.00 3.75 3.00 3.00
0.20 12.00 11.00 6.00 12.00 12.00 4.00 6.00 6.00

IL1A 0.10 21.00 10.50 10.50 10.50 21.00 14.00 10.50 10.50
0.20 20.50 13.67 13.67 13.67 20.50 13.67 13.67 10.25

MGP 0.10 11.00 5.50 3.67 5.50 5.50 5.50 2.75 3.67
0.20 11.00 5.50 3.67 5.50 5.50 5.50 2.75 3.67

VKORC1 0.10 5.00 3.33 3.33 2.50 5.00 2.50 3.33 2.00
0.20 5.00 3.33 3.33 2.50 5.00 2.50 3.33 2.00

ALOX12 0.10 10.25 5.86 4.56 5.13 20.50 10.25 4.10 2.93
0.20 7.75 5.17 4.43 5.17 15.50 7.75 4.43 3.44

SELL 0.10 13.00 10.40 8.67 3.06 17.33 10.40 8.67 3.06
0.20 4.25 2.83 2.43 2.13 5.67 3.40 3.40 1.42

VCAM1 0.10 3.00 1.91 1.91 2.10 4.20 3.00 2.10 1.91
0.20 2.17 1.86 1.63 2.17 4.33 3.25 1.63 2.17

F2 0.10 6.00 3.60 4.50 3.60 6.00 6.00 3.60 3.60
0.20 1.67 1.67 1.67 1.67 2.50 1.67 1.67 1.67

F10 0.10 2.38 1.72 1.72 1.35 6.20 3.44 2.82 1.48
0.20 2.11 1.36 1.36 1.19 4.75 2.71 2.11 1.36

ICAM1 0.10 8.00 4.00 2.67 1.60 4.00 2.29 1.78 1.60
0.20 4.33 4.33 2.60 1.63 4.33 2.60 2.17 1.86

Hap. Div: Haplotype diversity; ACH: All common haplotypes.
aMinor allele frequency.

Table 3 Prediction accuracy of the eight methods of tSNPs selection

Methods

Gene MAF a Hap.Div ACH Entropy R2h TagIT PCA BEST LD r2

DO 0.10 0.896 0.881 0.865 0.945 0.862 0.881 0.965 0.943
0.20 NAb NA 0.961 NA NA 0.966 0.922 0.943

IL1A 0.10 0.984 1.000 1.000 1.000 0.984 0.783 1.000 0.991
0.20 0.842 1.000 1.000 1.000 0.991 0.757 1.000 1.000

MGP 0.10 NA 0.957 0.946 0.976 0.976 0.976 0.981 0.951
0.20 NA 0.947 0.946 0.976 0.976 0.976 0.981 0.951

VKORC1 0.10 0.853 0.634 0.634 0.746 0.832 0.725 0.634 0.696
0.20 0.853 0.634 0.634 0.768 0.832 0.725 0.634 0.800

ALOX12 0.10 0.953 0.977 0.991 0.991 0.926 0.941 1.000 0.993
0.20 0.924 0.981 0.995 0.989 0.946 0.970 1.000 0.987

SELL 0.10 0.791 0.864 0.716 0.858 0.764 0.800 0.755 0.919
0.20 0.806 0.877 0.896 0.908 0.820 0.837 0.826 0.904

VCAM1 0.10 0.851 0.909 0.857 0.901 0.899 0.904 0.905 0.904
0.20 0.938 0.986 0.965 0.925 0.939 0.957 0.965 0.932

F2 0.10 0.864 1.000 0.969 1.000 0.938 0.938 1.000 1.000
0.20 1.000 1.000 1.000 1.000 0.929 1.000 1.000 1.000

F10 0.10 0.829 0.819 0.773 0.859 0.699 0.723 0.743 0.730
0.20 0.817 0.800 0.800 0.986 0.713 0.641 0.700 0.757

ICAM1 0.10 0.848 0.717 0.622 0.855 0.877 0.908 0.621 0.964
0.20 0.935 0.822 0.918 0.887 0.926 0.918 0.615 0.964

Hap. Div: Haplotype diversity; ACH: All common haplotypes.
aMinor allele frequency.
bPrediction accuracy cannot be calculated due to one tSNP.
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generated from eight published methods of tSNPs selec-

tion. The comparisons were carried out using sequence

data for 10 representative candidate genes for atherosclero-

tic cardiovascular disease with varying levels of LD in a

sample of European-Americans (Figure 1, Table 1).

Several factors, including LD level, MAF, tagging criteria,

and sample size may affect TE. TE was affected significantly

by the level of LD and was higher in genes with higher level

of LD. In high LD regions, the amount of variance in TE

was weakly related to the different methods of tSNPs

selection but not MAF. However, in moderate and low

LD regions, TE was influenced by the method of tSNPs

selection as well as the MAF cutoff. There appeared to be

nearly an order of magnitude difference in TE between

some of the methods (eg, a lower efficiency using LD r2 and

a higher efficiency using TagIT for ALOX12) (Table 2 and

Supplementary Figure 1). This difference may be due to

long-range associations between SNPs. For example, LD

may exist between bins, which were partitioned based on

LD r2 (or between haplotype blocks, such as All common

haplotypes), whereas TagIT is able to incorporate such

long-range LD.3,29 Tagging criteria influenced TE in the

genes with strong or moderate LD levels, especially for the

methods PCA, TagIT, and Haplotype diversity (Supplemen-

tary Table 2). With increase in tagging criteria from 0.70

to 0.80 to 0.90, a greater number of tSNPs was needed to

tag the entire gene region for these three methods. As the

SeattleSNPs investigators used a relatively small number

(n¼23 European-Americans) of subjects for SNP ascertain-

ment, we evaluated whether the perceived TE was affected

by larger sample sizes. No significant change in TE was

noted using larger sample sizes (n ranged from 24 to 90) for

each tSNPs selection method (Supplementary Figure 2).

The prediction accuracy of tSNPs selected by different

methods approached or exceeded the threshold of 0.90

(Table 3 and Supplementary Figure 3). Neither the choice

of tSNPs selection methods nor the level of LD significantly

affected the prediction accuracy (two-way ANOVA,

P40.05). Given the higher TE of Haplotype diversity and

TagIT, the prediction accuracy of these two methods was

higher in the gene regions with high LD and comparable to

other methods in the moderate and low LD regions.

In order to investigate whether TE and prediction

accuracy were different in genes larger than the ones we

initially studied (10 genes, 10B30 kb), we assessed TE and

prediction accuracy in an additional five genes ranging in

size from 30 to 50 kb. A similar pattern for TE and

prediction accuracy among different methods was noted

(Supplementary Figure 4).

We plotted prediction accuracy (on the X-axis) versus TE

(on the Y-axis) for the 10 genes for each tSNPs selection

method to assess the tradeoff between prediction accuracy

and TE at various LD levels (Supplementary Figure 5).

However, for a given method of tSNPs selection, no simple

linear relationship between TE and prediction accuracy was

obvious in the 10 genes. We also calculated the measure

‘tagging effectiveness’ described by Ke et al34 to assess

the percent of hidden (untyped) SNPs with r2Z0.80 to the

haplotypes defined by a tSNPs set (Figure 2). For all the

eight tSNPs selection methods, tagging effectiveness in

high LD regions was much higher than that in moderate

and low LD regions. However, within the three levels of
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Figure 2 The percent of hidden (untyped) SNPs with r2Z0.80 to haplotypes defined by a tSNPs set under two MAF cutoffs.
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LD, tagging effectiveness was similar among the eight

tSNPs selection methods (P40.05 by ANOVA).

Pairwise comparisons of tSNPs sets revealed poor con-

sistency between tSNPs selected using any two of the eight

methods. A limited degree of tagging consistency was

present between tSNPs derived from four methods (All

common haplotypes, Entropy, R2
h, and BEST), three of these

methods (All common haplotypes, Entropy, and, R2
h) being

haplotype-block-based (Supplementary Table 3). This may

be due to the low haplotype diversity in each block for the

haplotype-block-based methods, and therefore a greater

likelihood for similar tSNPs to be selected to represent

common haplotypes using two different methods. Among

haplotype-block-free methods, the underlying principles

for choosing tSNPs are diverse; for example, TagIT

incorporates all associations between SNPs along a region,

whereas LD r2 considers association between SNPs in a bin

(Supplementary Table 1). Thus, the tSNPs sets identified

by haplotype-block-free methods differed considerably. We

found little similarity between tSNPs sets generated from

the remaining four methods (Haplotype diversity, LD r2,

TagIT, PCA) (analyses not shown). Forton et al35 have

suggested that haplotype reconstruction by tSNPs gener-

ated by haplotype-block-based methods is more accurate

than haplotype-block-free methods.

The International HapMap project is meant to facilitate

the optimal selection of SNPs for cost-effective and robust

whole-genome association studies.36 Using the methods

described above, we obtained tSNPs sets for the same 10

genes in 24 African-Americans using resequenced data

from the SeattleSNPs database. Tagging consistency be-

tween European-Americans and African-Americans was

measured using Eq. (3). We found that the tagging

consistency between the two ethnic groups, or ‘tSNPs

transferability’,37 for any of the eight methods was poor,

indicating that the tSNPs set selected for European-

Americans are not transferable to African-Americans

(analyses not shown). However, tSNPs may be transferable

between different geographical samples of an ethnic

group37 or between various non-African populations.38

At least two initiatives, SeattleSNPs15,20 and the Environ-

mental Genome Project (EGP),39 have resequenced several

hundred candidate genes involved in inflammation and

environmental response, to facilitate candidate-gene-based

association studies. These two projects used a small panels

of subjects (n¼23–30) belonging to different ethnic

groups to characterize polymorphic variation and pattern

of LD in the candidate gene regions. In the present study,

we used resequenced data from SeattleSNPs (n¼ 23

European-Americans and 24 African-Americans). It has

been estimated that 48 chromosomes would identify

B99% of SNPs with a MAFZ5%.40 In a simulation study,

Thompson et al41 found that using such a sample size (25

unphased individuals) to select tSNPs did not reduce the

power of an association study, compared to using all SNPs.

Comparing various tSNPs selection methods is far from

straightforward. First, selecting representative gene data

sets for analysis is problematic because of different LD

levels in different genes and the variability in the number

of SNPs among genes. Second, the size of candidate genes

and genomic regions to be studied could be much larger

than the regions (50 kb maximum) investigated in the

present study and the extent of LD could also extend well

beyond this size. Third, there is no consensus on what are

the most appropriate statistics to evaluate the performance

of tSNPs sets. Each method for choosing tSNPs has its own

quality measure to optimally select a set of tSNPs. The

measure we used for evaluating the quality of tSNP

selection – prediction accuracy – aims to maximize the

expected accuracy of predicting untyped SNPs, given the

unphased (genotype) information of the tSNPs.31 Fourth,

there is no simple relationship between TE and accuracy

that allows one to choose an optimal balance of these two

measures. Recently, Ke et al34 used a matching TE among

three tSNPs selection methods to assess ‘tagging effective-

ness’. Generating a matching TE to compare prediction

accuracy of eight tSNPs selection methods would require

significant computational resources beyond the scope of

the present study.

A major expectation from using tSNPs is that the

genotyping cost is reduced, whereas at the same time the

statistical power for identifying associations is only mini-

mally compromised. Statistical power may be an important

metric in deciding which method is the most optimal in

association studies. A direct comparison of tSNPs selection

methods in the context of statistical power may be possible

in a simulation study,42 but was outside the scope of

the present study. Another expectation of tSNPs selection

methods is flexibility, allowing one to force a specific SNP,

for example, a nonsynonymous SNP, into the set of tSNPs.

Some programs, such as Hapblock,28 allow insertion of a

specific SNP into a tSNPs set. Flexibility would also allow

one to replace a SNP that cannot be genotyped with an

alternate tSNP, for example, an alternate SNP within the

same bin (LD r2) or the same haplotype block (Haplotype

diversity).

Except for LD r2, which uses genotype data to

calculate the pairwise LD measure (r2), the methods

for selecting tSNPs are based on haplotype data. We

used haplotypes inferred from the PHASE program43 to

generate the input for each method. Although convenient,

statistical inference of haplotypes is associated with a

degree of uncertainty as a proportion of the inferred

haplotypes may be incorrect. This may reduce the

statistical power of a haplotype approach to detect an

association with disease.43,44 How the tSNPs selection

methods compare when genotype data is used instead of

haplotypes needs further study. The use of genotype data

combined with a PL–EM (Partitioning-Ligation–Expecta-

tion-Maximization) algorithm for choosing tSNPs maybe
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comparable to the use of haplotypes in association

studies.9

A limitation of the present analyses is that there are

moderate amounts of missing data in the 10 genes (missing

data ranged from 1.9 to 8.2%). The PHASE program

imputes missing data when haplotypes are constructed.

How the missing data rate might affect tSNPs selection is

unclear although Zhang et al9 found that the statistical

power and the number of tSNPs with and without

moderate missing data were similar, even with 10% data

missing.

In conclusion, our comparison of the performance of

several methods for choosing tSNPs revealed that TE varied

with the methods, being highest for Haplotype Diversity5

and TagIT (haplotype r2).11 Because the prediction accuracy

and the computational cost were similar among different

methods, the methods Haplotype Diversity and TagIT

may be considered initially for tSNPs selection. We found

limited tagging consistency between tSNPs generated by

different tSNPs selection methods, and tSNPs had limited

transferability between African-Americans and European-

Americans. This work demonstrates that when tSNPs-based

association studies are undertaken, the choice of method

for selecting tSNPs requires careful consideration.
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