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Bardet–Biedl syndrome (BBS) is a genetically heterogeneous autosomal recessive disorder characterized
by variable obesity, pigmentary retinopathy, polydactyly, mental retardation, hypogonadism and renal
failure. In order to identify novel BBS loci we undertook autozygosity mapping studies using high-density
SNP microarrays in consanguineous kindreds. We mapped a BBS locus to a 10.1Mb region at 12q15–q21.2
in a large Omani BBS family (peak lod score 8.3 at h¼0.0 for marker D12S1722) that contained the recently
described BBS10 locus. Mutation analysis of candidate genes within the target interval, including the BBS10
gene, revealed a homozygous frameshift mutation in FLJ23560 and mutations were also detected in four
smaller consanguineous families with regions of autozygosity at 12q21.2. These findings (a) confirm a
previous report that FLJ23560 (BBS10) mutations are a significant cause of BBS, and (b) further
demonstrate the utility of high-density SNP array mapping in consanguineous families for the mapping
and identification of recessive disease genes.
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Introduction
Bardet–Biedl Syndrome (BBS: OMIM 209900) is an auto-

somal recessively inherited disorder with variable expres-

sion. Frequent manifestations include obesity, renal dys-

plasia, obesity, cognitive impairment, postaxial polydac-

tyly, pigmentary retinal degeneration and hypogonadism.1

The prevalence of BBS in North America and Europe has

been estimated to range from 1:140 000 to 1:160 000 live
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births,2 –4 but in Kuwait, Newfoundland and Oman, BBS is

more frequent (eg estimated incidences of 1:13 500,

1:17 500 and 1:30 000, respectively).1,5,6 The genetics of

BBS are complex and at the start of 2006 nine susceptibility

genes had been mapped previously: BBS1 at 11q13

(MIM209901); BBS2 at 16q21 (MIM606151); BBS3 (ARL6)

at 3p12–q13 (MIM608845); BBS4 at 15q22.3–q23

(MIM600374); BBS5 at 2q31 (MIM603650), MKKS BBS6 at

20p12 (MIM604896); BBS7 at 4q27 (MIM607590); BBS8

at 14q32.1 (MIM608132) and BBS9 (PTHB1) (MIM607968)

at 7p14.7–20 However, mutations in BBS1-9 only accounted

for only a small portion of BBS patients, indicating the

existence of additional BBS genes. Although the identifica-

tion of additional BBS genes in the presence of marked

locus heterogeneity is challenging, genetic linkage studies

in consanguineous families provide a powerful strategy for

identifying novel recessive disease genes. In order to map

novel BBS genes we undertook genetic linkage studies in

a large Omani BBS kindred. We mapped a novel locus to

chromosome 12q21.2 that overlapped the recently de-

scribed BBS10 locus21 and, furthermore, confirmed muta-

tions in the BBS10 gene, FLJ23560. We also excluded

linkage to the recently described BBS11 locus on chromo-

some 9q33.1. (Chiang et al22) in this kindred.

Patients and methods
Clinical ascertainment and phenotype

A consanguineous Omani family (F1, see Figure 1) pre-

sented with characteristic features of BBS to the Paediatric

Ophthalmology service at Sultan Qaboos University Hos-

pital. The detailed clinical features of four affected family

members are summarized in Table 1. After institutional

approval and informed consent from the patients, parents

and unaffected relatives, blood was collected for DNA

extraction from 14 family members (marked with a* in

Figure 1) and, following DNA extraction, microsatellite and

SNP-microarray genotyping studies were instigated.

Mutation analysis of FLJ23560 was also undertaken in

11 additional BBS kindreds (F2–12). This included seven

Pakistani BBS kindreds (F2–F8) and four consanguineous

BBS families (two with two unaffected individuals and each

with a single affected individual) in whom SNP-based

microarray studies had demonstrated autozygous regions

at (12q21.2).20

Molecular studies
Microsatellite genotyping studies DNA was extracted

from all patient blood samples using the Puregene extrac-

tion kit from Gentra, and stored at �801C. Primers for

microsatellite markers flanking BBS1-9 were synthesized

and genotyping performed (details available on request).

SNP genotyping studies Three affected members of the

Omani family were genotyped with the Affymetrix 10k 2.0

SNPmicroarray (as described previously for other families23).

SNP genotyping studies in the four small families with

a BBS10 mutation have been reported previously.20

Mutation analysis of CCT2, MDM2, RAB21, TBC1D15 and

VMDL2L3 was performed by direct sequencing using the

ABI Big Dye Reaction Mix and standard methodology

(details of primer sequences and methods available on

request). Mutation analysis of FLJ23560 (C12orf58) was

performed as reported by Stoetzel et al.21

Results
Genetic linkage studies

After excluding linkage to BBS1-9, (data not shown), we

initiated a genome-wide linkage scan in three affected

individuals. Analysis of the data from Affymetrix 10k SNP

arrays24 revealed a common 10.1Mb region of autozygosity

at 12q15–q21.2 (between 67.2 and 77.3Mb) shared by

each of the four patients analysed (see Figure 2) and

supplementary Table. Genotyping of microsatellite mar-

kers (D12S1294, D12S375, D12S1680, D12S1693,

D12S1722, RH27150, SHGC-56430, D12S1052, D12S1660)

confirmed linkage (peak lod score at D12S1722 of 8.3

y¼0.0) and a target interval of 10.1Mb.

Mutation analysis of candidate genes

Thirty-three known and 24 predicted genes were contained

in the 10.1Mb candidate region identified from linkage

studies in F1 (Chromosome 12: 66822895 to 77322947Mb

see Supplementary Table (http://genome.ucsc.edu/)). As

BBS is a putative ciliopathy,16,19,25 we prioritized our

selection of candidate genes based on expression in the

Figure 1 Large consanguineous Omani family with Bardet–Biedl
syndrome. *¼ individuals genotyped. Affected individuals are labelled
A–D (see Table 1).
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ciliary and basal body proteomes after interrogation of

the open-resource Ciliary Proteome Database26 at www.

ciliaproteome.org. Sequencing of CCT2, MDM2, RAB21,

TBC1D15 and VMDL2L3 did not detect mutations, but in

the light of the report of Stoetzel et al,21 we then analysed

FLJ23560 (C12orf58) and detected a homozygous frame-

shift mutation, c.995_999delAAGA (p.Q242fs258X), in all

four affected individuals tested (Figure 3). All parents of

affected individuals were heterozygous for the mutation

and unaffected siblings were heterozygous or homozygous

wild-type. Furthermore the, p.Q242fs258X mutation was

not detected in 72 Arab control chromosomes.

Mutation analysis of seven unrelated Pakistani BBS

probands from consanguineous families (three of which

were unlinked to 12q15–q21.2 (data not shown) revealed

normal wild-type sequence in six cases. In one family a

single affected individual was homozygous for a missense

substitution (p.Pro539Leu, 1880C4T) that had been

reported as a polymorphic variant by Stoetzel et al.21 In

addition, protein structure predictions suggested that the

substitution would not have a major effect on FLJ23560

protein structure (data not shown). We also detected the

p.Pro539Leu substitution in three of 96 Pakistani control

chromosomes.

Mutation analysis of FLJ23560 in four consanguineous

BBS kindreds previously shown to have an autozygous

segment at 12q21.2,20 revealed mutations in all four

probands. The four consanguineous BBS families were

found to share autozygous segments at 12q21.2 that

ranged in size from 4.3 to 26.3Mb. The smallest interval

Table 1 Clinical features of four affected individuals from the large Omani BBS Kindred (F1)

Clinical features Patient D Patient C Patient B Patient A

Age at recognition of
visual problems

4 years – night blindness 4 years – night
blindness

6 years – vision
impairment

10 years – vision impairment

Age at examination 6 years 4 years 13 years 24 years

Retinal dystrophy
Night blindness + + + +
Visual impairment VA¼0.3/0.15 VA NA VA¼0.2/0.2 VA¼0.05/0.05
Fundus changes:
ophthalmoscopy

Retinal vascular
attenuation, mild
pigmentary disturbance

Retinal vascular
attenuation, mild
pigmentary disturbance

Retinal vascular
attenuation, mild
pigmentary disturbance

Optic nerve pallor, retinal
vascular attenuation,
pigmentary disturbance
(tigroid fundus; few bone-
spicules in mid-periphery),

Visual field Could not be tested Could not be tested Constricted field of
vision (401)

Constricted field of vision
(201)

Refractive error �3/�2; �4/�2
Myopic astigmatism

+3.75/�2; +3.0/�2
Hypermetropic
astigmatism

�0.5/�2; �1.5/�2.0
Myopic astigmatism

�10.75/�1.5; �8/�2
High myopic astigmatism

Weight (kg) 30
truncal obesity round
facies

28
truncal obesity round
facies

79
truncal obesity round
facies

80
truncal obesity

Height (cm) 110.6 109 156 160
Polydactyly All four limbs syndactyly

brachydactyly
Hands brachydactyly
Feet – polydactyly,
syndactyly

Brachydactyly all four
limbs
Hands – Syndactyly
(surgery)

Brachydactyly, polydactyly

Genital system (genital
malformation, secondary
sex characteristics)

Infantile uterus on
ultrasound exam

F Small penis;
undescended testes

Small penis

Intellectual impairment
or delayed development

Vineland Social
Maturity Scale*
Social age – 2.5 years
Social quotient – 40
Moderate mental
retardation

Delayed motor
development and
speech delay-attention
deficit disorder with
poor concentration*

Delayed motor
development and
speech delay poor
academic school record

Delayed motor development
and speech delay poor
academic school record

Renal anomalies Recurrent urinary tract
infection+urinary
incontinence
No renal anomalies on
ultrasound scan

No renal anomalies on
ultrasound scan

No renal anomalies –
(blood urea and
electrolytes, ultrasound)

No renal anomalies –
(blood urea and
electrolytes+ultrasound)

Cardiovascular system Normal (clinical exam) Normal (clinical exam) Normal (clinical exam) Normal (clinical exam)

VA¼best-corrected visual acuity; NA¼not assessed.
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of overlap defined in these families was 2.5Mb. This 2.5Mb

region of overlap contains FLJ23560, the BBS10 gene.

Mutation analysis of FLJ23560 in these four families

revealed homozygous mutations in all affected individuals.

Affected individuals in two of the families were homo-

zygous for the recently reported common BBS10 mutation,

C91fsX95. The proband of one family was homozygous for

the recently reported V707fsX708 mutation, whereas the

proband of the remaining family was homozygous for a

novel frameshift mutation, N364fsX368.

Discussion
We initially mapped a novel BBS locus to chromosome

12q21.2 and then detected inactivating mutations in

FLJ23560 in five BBS kindreds. Thus, our study confirms

that FLJ23560 is the BBS10 gene, as reported recently by

Stoetzel et al.21 The BBS genes identified to date represent a

range of putative functions with some BBS gene products

having been localized to basal bodies and centrosomes

(BBS4, BBS5, BBS7 and BBS8.16,27,28 Roles in ciliary

function, intracellular and intraflagellar transport, and

maintenance of planar cell polarity have been implicated

as key pathways in the pathogenesis of BBS.16,22,28 –33,34

However, FLJ23560 (C12orf58) differs from other BBS genes

by encoding a group II chaperonin that is not conserved in

invertebrates.21 Although BBS6 (also known as MKKS) is

also thought to encode a chaperonin,27 BBS6 and BBS10

differ as BBS10 is restricted to vertebrates and contains a

functional motif responsible for ATP hydrolysis that is

found in all group II chaperonins,35 but which is not

present in BBS6.21,27 Hence, it appears that BBS10 may

represent a novel chaperonin subfamily. At present the

relationship between BBS10 and ciliary body/intraflagellar

transport function is not known, but if the BBS10 protein

does function as a chaperonin then it may regulate the

folding or stability of other ciliary or basal body proteins.

Three of the four BBS10 mutations characterized in our

cases were also detected by Stoetzel et al.21 The Q242fs258X

homozygous truncating mutation identified in the large

Omani family (F1) was also found in a homozygous state

in a Lebanese and in the heterozygous state (a second

mutation was not identified) in a Middle Eastern family.

Previously most Middle Eastern BBS families did not have a

mutation in BB1-9, but BBS10 mutations were detected in

6/26 families of Middle Eastern ancestry.21

The clinical phenotype of BBS is extremely variable and

genotype–phenotype correlations are hindered by marked

locus heterogeneity, compound heterozygosity in non-

consanguineous cases and suggestions of digenic and

oligigenic inheritance in some families.25,36,37 The identi-

fication and detailed clinical phenotyping of cohorts of

BBS patients homozygous for common founder or recur-

rent mutations will facilitate the identification of geno-

type–phenotype determinants.

The mapping of BBS10 to 12q15–q21.2 in the large

Omani BBS family illustrates the power of an autozygosity

mapping strategy even in the presence of locus hetero-

geneity. The availability of SNP microarrays for genotyping

Marker Physical Location
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Figure 2 Microsatellite and SNP genotyping data for four affected individuals from large Omani family with BBS. Homozygous regions are shaded
grey with the region of homozygosity common to all affected individuals is indicated by black line.
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has further enhanced this approach. However, such

families are rare and often not available. Recently,

Nishimura et al20 reported autozygosity mapping studies

in small, consanguineous BBS pedigrees using moderately

dense SNP arrays. A combination of comparative genome

analysis and gene expression studies of a BBS-knockout

mouse model was then used to identify BBS candidate

genes and mapping of consanguineous affected sib pairs

and isolated cases revealed a region at 7p14 containing the

parathyroid hormone-responsive gene B1 (BBS9) in which

germline mutations were identified in a consanguineous

BBS family and then five nonconsanguineous kindreds.20

In addition, among non-BBS9 linked families, four were

homozygous at 12q21.1. Each of these families was found

to harbour a FLJ23560/BBS10 mutation further demon-

strating the potential for homozygosity mapping with SNP

arrays for gene identification studies in small, consangui-

neous families. Recently, Woods et al38 reported that the

mean size of the homozygous segment associated with

recessive disease in a consanguineous family was 26 cM

(range 5–70 cM). Although in many families the frequency

of homozygous regions was higher than that predicted by

simple models of consanguinity – which would be

expected to impair autozygosity mapping studies, the

longest homozygous segment was the disease-associated

segment in 17% of individuals. In the large Omani family

BBS10 was included in the largest autozygous region and

analysis of the four small families used for autozygosity

mapping in the current study revealed that the disease

locus was the longest segment of autozygosity in two

families and within the second longest region of auto-

zygosity in the remaining two families. Thus, the ascer-

tainment and sampling of both large and small

consanguineous recessive disease families can have a

critical role in the identification of human disease genes

and the functional annotation of the human genome.
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