
ARTICLE

Pairwise linkage disequilibrium under disease models
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Many genetic studies of disease association rely heavily on linkage disequilibrium (LD) patterns between
pairs of markers to detect susceptibility markers. This is true of large-scale positional mapping approaches
as well as haplotype construction, selection of tagging single-nucleotide polymorphisms and population
genetic analyses. Whereas the distribution of different LD measures has been investigated for randomly
selected chromosomes from populations undergoing a variety of demographic effects, little is known
about LD within disease-affected samples, and how various disease models influence the difference in LD
between patients and the general population. As whole-genome efforts are now underway to characterize
and utilize LD patterns in randomly sampled individuals, knowledge about the extent that LD differs
between patients and the general population becomes crucial. Such information will allow investigators to
design improved mapping experiments and better understand haplotype information arising from such
experiments. In this paper, we explore two-site LD measures in the context of single gene disease models.
Analytic expressions are presented for infinite populations and properties of sampling densities are
reported for different disease models. Interestingly, results indicate that ‘underdominant’, some
dominant, recessive and ‘protective’ disease models generate weaker LD levels in patients compared to the
general population, whereas other models produce stronger LD among affected individuals. Analytic
results are also presented for the ratio of LD in patients to the LD in the general population as a function of
recombination fraction using a Haldane model. In addition, we explore the impact of various allele
frequency combinations on LD differences.
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Introduction
Large-scale genetic association studies generally depend at

least in part on the existence of linkage disequilibrium (LD)

between genetic markers and a disease locus (for a review

see Clark1). LD is a concept of statistical correlation

between alleles segregating at two or more loci.2 Con-

versely, linkage equilibrium refers to the state where the

alleles at a particular locus are independently distributed

with respect to the alleles at an alternative locus. There are

several ways in which LD can be generated in a sample of

chromosomes. Population genetics factors can produce LD

through a variety of processes such as natural selection,

strong genetic drift, admixture and new mutations.3,4,5

Similarly, skewed sampling of chromosomes from a

population, for example, the selection of disease-affected

individuals, can also give rise to LD levels higher or lower

than expected. Importantly, this type of skewed sampling

can also produce departures from what is termed the

‘fundamental theorem of the HapMap’ (terminology from

Terwilliger and Hiekkalinna, 2006).6 The fundamental

theorem states that the statistical power to detect disease

association indirectly at a marker locus in LD with a
Received 13 March 2006; revised 28 September 2006; accepted 4 October

2006; published online 15 November 2006

*Correspondence: Dr SJ Schrodi, Statistical Genetics, Celera Diagnostics

Inc., 1311 Harbor Bay Pkwy, Alameda, CA 94502, USA.

Tel: þ 1 510 749 4270; Fax: þ1 510 743 6250;

E-mail: Steven.Schrodi@celeradiagnostics.com

European Journal of Human Genetics (2007) 15, 212–220
& 2007 Nature Publishing Group All rights reserved 1018-4813/07 $30.00

www.nature.com/ejhg



disease-susceptibility locus is approximately the same as

the power to detect disease-association directly at the

susceptibility locus, if the sample size is increased by a

factor of 1/r2, where r2 is the commonly used measure of

pairwise LD. Put concretely, imagine two loci, one directly

involved in disease and the other in LD with the first,

causative locus with r2¼ 1
3 between them. If 500 cases and

500 controls are required to obtain 80% power to detect

disease association at the causative locus, then the

fundamental theorem states that approximately 1500 cases

and 1500 controls are necessary to reach the same 80%

power level at the marker locus in LD with the causative

locus. As pairwise LD is correlated with disease status, some

level of departure from the fundamental theorem is to be

expected. This point was made explicitly by Terwilliger and

Hiekkalinna6 where they argued that the fundamental

theorem only applies, among other conditions, if the ‘LD

between loci and the etiological effect of the functional

variant are independent of each other.’

Recently, there has been considerable interest in creating

and utilizing whole-genome haplotype maps for the

purposes of disease-susceptibility mapping in humans7,8

and investigation of genetic structure of populations.

These maps allow one to quantify the strength of LD

across the entire genome. By choosing representative

markers from sets of markers that are in high LD with

each other, investigators aim to reduce drastically the

number of markers necessary to interrogate adequately

the genome.9,10 Additionally, the pattern of disease

association decay with decreasing pairwise LD can be used

to identify regions that are more likely to carry predispos-

ing chromosomal segments. As LD maps are typically

constructed from randomly sampled individuals, under-

standing the effect that different disease models have on

modifying the level of LD in patients is important: such

information can be used to (i) better select tagging markers

for large-scale studies and (ii) construct statistical tests to

better understand if specific regions are disease-predispos-

ing. To these ends, we wanted to investigate the impact

that different disease models have on traditional measures

of LD.

In this paper, we derive simple analytic results for

commonly used measures of LD under general single gene

disease models, defining regions of the parameter space

that give rise to LD levels in disease-affected individuals

either above or below the general population LD level. We

then investigate LD sampling properties given general

population haplotype frequencies under a neutral coales-

cent. The results characterize the effect of disease models

on LD patterns. This work may change how current

HapMap data are used to select tagging single-nucleotide

polymorphisms (SNPs). For example, in some instances, it

may be desirable to genotype densely a small set of affected

individuals alongside a small set of control individuals,

just as the HapMap project densely genotyped randomly

selected individuals. Additionally, selection of SNPs to

perform fine-scale mapping, once associated markers are

identified, may be informed by explicitly modeling LD

patterns differently between cases and controls. Lastly, this

type of information may also enable improved statistical

tests for identifying regions with disequilibria patterns that

correspond to those expected under certain disease models.

Important developments in this area can be found in a

study by Nielsen et al,11 where the authors construct a

statistical test using LD differences between cases and

controls, thereby providing researchers an additional

method for testing for association, aside from the more

traditional haplotype-based contingency table tests of

homogeneity. More recently, an extension of this work

was published showing analytic and graphical methods for

this LD-contrast-type test.12

Theory
To characterize pairwise LD in preferentially selected

groups of individuals, we will define a simple single gene

disease model and explore two commonly used measures,

D and r2, as a function of penetrance parameters and allele

frequencies. Both asymptotic and sampling results are

presented. For a two-locus model, say loci A and B, in

which two alleles segregate at each locus, D is defined as

p11p22–p12p21, where pij is the frequency of the AiBj

haplotype. Denote A1B1 and A2B2 as parental haplotypes,

and the remaining two as recombinant haplotypes. See

Devlin and Risch,13 for a review of these and other

measures of LD. r2, the squared correlation coefficient

between alleles at the two loci,14 is a normalized version of

D and is defined as

r2 ¼ D2

p1�ð1� p1�Þp�1ð1� p�1Þ
ð1Þ

denoting the margins (single-locus allele frequencies)

p11þ p12 and p11þ p21 by p1K and pK1, respectively. We

will treat both LD measures as being calculated in two

distinct ways: as population parameters and as sampling

statistics from a small set of chromosomes from affected

individuals, the former of which will be called ‘asymptotic

results’ and the latter ‘sampling results’.

Suppose now that the A locus postulated above has a

variant that predisposes carriers to a disease phenotype.

Following this characterization, designate the B locus as

the marker locus with no causal relationship to the disease

phenotype. Denote the two alleles segregating at the A

locus by A1 and A2. Further define three genotypic

penetrances to specify a single gene disease model,

f11¼P[Dz|A1A1], f12¼P[Dz|A1A2] and f22¼P[Dz|A2A2]. Let

us define the frequencies of the haplotypes in affected

individuals as ~pij , using analogous definitions as in the

general population. Assuming Hardy–Weinberg equili-

brium (HWE), we arrive at the set of affected haplotype
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frequencies by applying Bayes’ rule:

~p11 ¼ p11
K

½f11p1� þ f12ð1� p1�Þ�; ~p12 ¼ p12
K

½f11p1� þ f12ð1� p1�Þ�

~p21 ¼ p21
K

½f12p1� þ f22ð1� p1�Þ�; ~p22 ¼ p22
K

½f12p1� þ f22ð1� p1�Þ�

ð2� 5Þ

where the prevalence of disease is K¼P[Dz], and making

use of the Hardy–Weinberg assumption,

K¼ f11p1K
2 þ2f12p1K(1–p1K)þ f22(1–p1K)2. Similar equa-

tions, using different notation, can be found in Nielson

et al.11 The single-locus allele frequencies in affected

individuals are simply

~p1� ¼
p1�
K

½f11p1� þ f12ð1� p1�Þ� ð6Þ

~p�1 ¼ p11
K

½f11p1� þ f12ð1� p1�Þ� þ
p21
K

½f12p1� þ f22ð1

� p1�Þ� ð7Þ

It is now a matter of simple algebra to calculate LD

measures in patients under the general single gene model.

Combining the above results allows ~D1 , the LD in all

affected individuals, to be expressed in terms of the general

population DN and multiplicative factor:

~D1 ¼ D1
K2

½f11p1� þ f12ð1� p1�Þ�½f12p1� þ f22ð1� p1�Þ� ð8Þ

where the infinity subscript is shown to indicate that this is

an asymptotic result applying to the population as a whole.

If we set each of the penetrances equal to the same

constant, it can be easily verified that j ~D1j ¼ jD1j as

expected. Similarly, an expression for ~r21 can be obtained

~r21 ¼ r21
~D1
D1

 !2
p1�p�1ð1� p1�Þð1� p�1Þ
~p1�~p�1ð1� ~p1�Þð1� ~p�1Þ

� �
ð9Þ

For the sake of brevity, we write ~r21 in terms of the allele

frequencies in the affected individuals in the denominator:

~r21 ¼ r21
K4

1
~p1�~p�1ð1� ~p1�Þð1� ~p�1Þ

� �
�p1�p�1ð1� p1�Þð1� p�1Þ½f11p1� þ f12ð1� p1�Þ�2

�½f12p1� þ f22ð1� p1�Þ�2

The ratio of ~r21 to r21 is therefore

½f11p1� þ f12ð1� p1�Þ�½f12p1� þ f22ð1� p1�Þ�½p�1ð1� p�1Þ�
C½f11p11p1� þ f12ðp11 � 2p11p1� þ p1�p�1Þ þ f22ð1� p1�Þðp�1 � p11Þ�

ð10Þ

where

C ¼f11p1�ðp11 � p1�Þ þ f12½p1�ðp�1 þ 2p1� � 2Þ � 2p11p1� þ p11�
þ f22ð1� p1�Þðp1� þ p�1 � p11 � 1Þ

These asymptotic LD measures can be examined under

specific disease models by positing relationships between

the three penetrances. Evaluation of four classic models,

dominant, recessive, additive and multiplicative, will shed

some light on how phenotype-based sampling modifies

levels of LD. First, consider the pure dominant model

where f11¼ f12 and f22¼0 (this and other models are

considered ‘pure’ models when one or more of the

penetrances of genotypes not carrying a predisposing allele

is 0 – that is, the prevalence is zero in the absence of the

predisposing allele). Under this dominant model,

~D1 ¼ D1

p1�ð2� p1�Þ2
ð11Þ

Hence, when the probability of the predisposing allele,

p1K, is less than ð3�
ffiffiffi
5

p
Þ=2 (approximately 0.381966), j ~D1

j4jD1j ; otherwise, the LD in patients is less than the

general population value, ignoring trivial solutions. Gen-

eralizing this dominant model by considering f22Z0,

~D1 ¼ D1g½p1�ðg� 1Þ þ 1�
½�p21�ðg� 1Þ þ 2p1�ðg� 1Þ þ 1�2

ð12Þ

For this and subsequent results, the notation is changed

to genotype relative risk (represented as g), such that (f11/

f12)¼ (f12/f22)¼ g for the above model. ~D1 in patients under

the pure recessive mode of inheritance, where f12¼ f22¼0,

is zero regardless of allele frequency. The reason for this is

that all patients must have the A1A1 genotype and there-

fore the only two possible haplotypes, A1B1 and A1B2,

necessarily yielding ~D1 ¼ 0. The general recessive model,

f22¼ f12, (f11/f22)¼ g, has richer dynamics:

~D1 ¼ D1ðgp1� � p1� þ 1Þ
ðgp21� � p21� þ 1Þ2

ð13Þ

Analysis of equation (13) shows that for high-frequency

predisposing alleles, j ~D1jojD1j; otherwise low-frequency

predisposing alleles with a recessive mode of inheritance

produce higher LD levels in patients (see Table 1). Con-

sidering the two intermediate models, general additive (f11/

f22)¼2g–1,(f12/f22)¼ g and multiplicative (f11/f22)¼ g2,(f12/
f22)¼ g models, give

~D1 ¼ D1ðgp1� � p1� þ 1Þðgp1� � p1� þ gÞ
ð2gp1� � 2p1� þ 1Þ2

ð14Þ

and

~D1 ¼ D1g

ðgp1� � p1� þ 1Þ2
ð15Þ

respectively. Under the additive model, j ~D1jojD1j for

allele frequencies, p1K, above g� 3þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ 6g� 3

p	 

=6�

ðg� 1Þ. Similarly, for the multiplicative model, j ~D1jojD1j
when p1�4ð1� ffiffiffi

g
p Þ=ð1� gÞ. Additionally, modes of inheri-

tance where the penetrance of the heterozygote is smaller

than either of the homozygotes, or an ‘underdominant’

model, the inequality j ~D1jojD1j always holds. Table 1

shows a summary of results under various inheritance

models with analytic results of LD isoclines.

As the allele frequencies piK and pKj are invariant to the

effects of recombination, the ratio of ~D1 to DN does not

vary with recombination fraction. However, this is not the
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case with r2. The ratio ~r21=r21 does change, often

dramatically, with increasing recombination. This is due

to the inability of the allele frequency at the marker locus

within affecteds to be expressed solely in terms of

penetrances and population allele frequencies in lieu of

haplotype frequencies. Essentially, our immediate goal

here is to evaluate the ratio Rt ¼ ð~r21;t=r
2
1;tÞ for infinite

populations following different numbers of generations.

Subscripts are shown to indicate that the quantities are

now a function of accumulated recombination following

the passage of t generations.

Rt ¼ b½~p�1;tð1� ~p�1;tÞ��1 ð16Þ

where the factor b is not a function of recombination rate,

and can be shown to be

b ¼
p�1ð1� p�1Þ½f11p1� þ f12ð1� p1�Þ�½f12p1� þ f22ð1� p1�Þ�

K2

ð17Þ

To characterize the effect that recombination has on the

marker locus, we first use the standard recursion-based deri-

vation for the haplotype frequencies following t generations,

pij;t ¼ ð1� rÞtðpij;0 � pi�p�jÞ þ pi�p�j ð18Þ

Hence, substitution of the right-hand side of equation (18)

into equation (7) yields

~p�1;t ¼
1

K
f½Dt¼0ð1� rÞt þ p1�p�1�½f11p1� þ f12ð1� p1�Þ�

� ½Dt¼0ð1� rÞt þ ð1� p1�Þp�1�½f12p1�
þ f22ð1� p1�Þ�g

ð19Þ

which, in turn, is used to complete the derivation of Rt in

terms of recombination fractions, generations, and the

initial state of the system.

Figures 1a and b show the decay in LD between a

causative locus A and marker locus B as recombination

increases between the two loci. LD levels within affected

individuals and within the general population were

Table 1 LD relationships under various disease models

Model Penetrance relationships ~D1=D1 Allele frequency

Pure dominant f11¼ f12
f22¼0 1

pð2� pÞ2 p4
3�

ffiffiffi
5

p

2

Pure recessive f12¼ f22¼0 0 All p

General recessive f114f12¼ f22 (f11/f22)¼ g
ðg� 1Þpþ 1

½ðg� 1Þp2 þ 1�2

Expr I

Additive (f12/f22)¼ g
(f11/f22)¼2g�1 ½ðg� 1Þpþ 1�½ðg� 1Þpþ g�

½2ðg� 1Þpþ 1�2 p4
g� 3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ 6g� 3

p
6ðg� 1Þ

Mult (f12/f22)¼ g
(f11/f22)¼ g2 g

½ðg� 1Þpþ 1�2 p4
1� ffiffiffi

g
p

1� g

Symmetric underdominant f12of11
f12of22
f11¼ f22¼ g(f12)

½ðg� 1Þp� g�½ð1� gÞp� 1�
½2ðg� 1Þp2 þ 2ð1� gÞpþ g�2

All p

Symmetric overdominant f124f11
f124f22g
(f11)¼ g(f22)¼ (f12)

½ðg� 1Þpþ 1�½ð1� gÞpþ g�
½2ðg� 1Þp2 þ 2ð1� gÞp� 1�2

Never

ExpI:
ffiffi
23p ðG2=3Þþ4

ffiffi
33p ðg�1Þffiffiffiffi

363p ðG1=3Þðg�1Þ
where G ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð27gþ 5Þðg� 1Þ

p
þ 9g� 9

� �
ðg� 1Þ

Summary of LD relationships between affecteds and the general population across a variety of models. The ratio of ~D1 to DN is presented across
several disease models along with the general population allele frequency at which the LD ratio is greater than 1. The solution to the general dominant
model is complicated, and hence not presented.
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calculated under three different disease models. In all

models, initially only the parental haplotypes are present.

These initial parental haplotype frequencies are 50 and

50% (p11¼0.50; p22¼ 0.50) across all models. The number

of recombination events increases linearly in time. The first

model investigated is of a disease with a dominant mode of

inheritance against a background of sporadic disease. The

results under this model are presented in Figure 1a. Figure 1a

shows the common situation where Rt41. Rt is above unity

regardless of the number of recombinant haplotypes, and

the inceptive decay of LD is more rapid in the general

population. Figure 1b shows the decay of LD situation under

a recessive model. LD decay patterns under an under-

dominant model were studied next. The departure in LD in

the affecteds from the general population under the under-

dominant model is more extreme than a recessive model,

with certain recombination rates yielding Rt values below
1
2

(results not shown). In both models, LD levels in the disease

population are lower than that in the general population

across recombination fractions. It should be pointed out that

empirically the patterns of LD across organisms are ubiqui-

tously complex, and not fully determined by the effects of

recombination. Although the results presented in this paper

are approximate (we only model the effect of recombination

on LD), we believe that it might be of interest.

Potential impact on power
To illustrate how differences in LD patterns between cases

and controls can impact disease gene mapping, consider

the following example. Suppose the general population

haplotype frequencies are p11¼0.10, p12¼0.01, p21¼ 0.01

and p22¼0.88. The minor allele frequency at either site is

11%, and the rN
2 statistic in the general population is

0.8061 – above many commonly used thresholds employed

by many procedures to identify SNP pairs in high LD.

Further consider a recessive disease model with pene-

trances f22¼0.05, f11¼ f12¼0.0001. Disease prevalence,

assuming HWE, is 4% under these conditions. The

haplotype frequencies in affected individuals are expected

to be ~p11 ¼ 0:00025, ~p12 ¼ 0:00003, ~p21 ¼ 0:0112, and ~p22 ¼
0:9885 , yielding dramatically lower LD in the affected

population: ~r21 ¼ 0:0197. Trouble can arise in this situation

if an investigator assumes the general population LD level

before a case/control experiment. Given the high LD in the

general population, one may assume that second site (locus

B in the terminology used above) could be used as a tagging

SNP for the first locus (the disease-predisposing locus).

Assuming 250/250 case and control chromosomes used in

a genome-wide association scan, power to detect disease

association at the B locus is approximately 35% (taking a

Bonferroni-corrected significance level of 1�10�7). How-

ever, if the investigator had restrained from assuming that

LD patterns across cases and controls were similar, and

perhaps went further to genotype densely in a small set of

affected individuals, then noting that ~r21 ¼ 0:0197 may

have persuaded this judicious researcher to genotype both

the disease and marker loci (both the A and B SNPs). Had

both loci been genotyped in the case/control experiment,

power would more than double to 73% for a two-locus

Linkage Disequilibrium under a Disease Model 
Dominant Model: f11=0.05; f12=0.05; f22=0.005

Linkage Disequilibrium under a 
Disease Model 

Recessive model: f11=0.05; f12=0.005; f22=0.005
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Figure 1 r2 values for the general population are shown in a solid line, whereas r2 values for affected individuals are shown in the dashed line. (a)
Decay of LD from cumulative recombination events with and without a disease model. Under this dominant model, the LD among affected individuals
is always equal to or higher than the LD level in the general population. Switching to a recessive model (b) displays the opposite pattern with Rto1 for
any nontrivial level of recombination. The relative risk of predisposing to nonpredisposing genotypes under both models is 10.

Linkage disequilibrium under disease models
SJ Schrodi et al

216

European Journal of Human Genetics



haplotype test (using the same sample size and significance

level). In both of the above power calculations, a Monte

Carlo simulation running 100000 replicates was used.

Although this is an extreme example, it nonetheless

demonstrates the possibility that ignoring the impact of

disease models on LD can hinder mapping efforts.

One can frame this power-based argument in terms of

the ‘fundamental theorem’ describing the relationship

between power to detect association indirectly at a marker

locus and the r2 value between the marker and a disease-

susceptibility locus. More precisely, it states that if a certain

sample size is required at a disease locus to detect disease

association at a given level of power, the sample size must

be increased by a factor of 1/r2 to obtain the same power

indirectly at a marker locus. This simple relationship is

described in Lai et al15 and Pritchard and Przeworski.16 This
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Figure 2 Error rate in the number of samples required to obtain a given power threshold to detect disease association as estimated by the
fundamental theorem is explored for various disease models. LD is measured in terms of the r2 measure. In each case, the percentage error increases
with decreasing pairwise LD. Typical error rates are in the range of 710% across much of the parameter space. Minor allele frequencies are around
10% in the general population across all models at both loci. Diploid cases/control (500/500) and 0.05 sig level assumed across all plots. (a) An
underdominant model with penetrances of f11¼0.08, f12¼0.04, f22¼0.08. (b) A general dominant model with penetrances of f11¼0.08, f12¼0.08,
f22¼0.04. (c) Results under a general recessive model with penetrances of f11¼0.20, f12¼0.02, f22¼0.02. Lastly, (d) shows an additive model with
penetrances of f11¼0.05, f12¼0.10, f22¼0.15. Power to detect disease association at the marker locus is displayed with the error percentage.
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relationship is a good rule of thumb, but in a case–control

setting, deviations caused by disease models can be

substantial as pointed out recently by Terwilliger and

Hiekkalinna.6 In most realistic instances, the underlying

disease model modifies the ‘fundamental theorem’ from

�10 to þ10%. That is, the sample size estimated to be

required to detect association at a particular power level is

over- or underestimated by approximately 10%. Hence,

assuming that of the several assumptions of the funda-

mental theorem mentioned by Terwilliger and Hiekkalin-

na6 that the only one violated is the independence of

etiology and LD patterns, our conclusions concerning the

inaccuracies of the fundamental theorem are less extreme

than those put forth by Terwilliger and Hiekkalinna. See

Figure 2 for an evaluation of a number of these likely more

realistic models. In situations where ~r21=r21o1, the funda-

mental theorem underestimates the sample size needed to

detect disease association at a marker in LD with a disease-

susceptibility site. Conversely, the fundamental theorem

overestimates the sample size when ~r21=r2141.

Sampling properties given general population
haplotype frequencies

To this point, our analysis has been restricted to properties in

an infinite population. However, haplotype sampling proper-

ties are of particular interest as data invariably are in the form

of a sample of chromosomes from the general population.

Define xij as the number of copies of the AiBj haplotype in a

sample of n chromosomes. Sampling of haplotypes will be

based on the modified haplotype probabilities derived above

equations (2)–(5). Assuming a very large general population,

the joint probability of the number of copies of each of the

four haplotypes is the multinomial density

P x11; x12; x21; x22½ � ¼ n!
~px1111

~px1212
~px2121

~px2222

x11!x12!x21!x22!
ð20Þ

As for any finite n, P[p1K¼0]40 and P[pK1¼ 0]40, we can

redefine the r2 statistic in either of these cases as the limit

of r2 as an allele goes to fixation in the sample. It is readily

shown that lim
p11þp12!0

r2 ¼ 0and lim
p11þp21!0

r2 ¼ 0. Hence, we set

r2¼0 in situations where there are no copies of one of the

alleles (at either locus) in the sample.

Following equation (20), multinomial-distributed haplo-

type counts were generated via computer simulations.

The aim of these simulations was to better understand

sampling properties of the r2 statistic under disease models

and general population. The results of these simulations

are presented in Figures 3a and b, showing the 2.5th and

97.5th quantiles as well as the mean value of r2. A recessive

model and an additive model were explored in Figures 3a

and b, respectively. Not surprisingly, in both models the

sample variance of ~r2 is smaller than r2. This is due to the

selected sampling of chromosomes for affected chromo-

somes, which, under many models, are more genetically

homogeneous than a random sample from the general

population. Hence, these sampling effects lead to reduced

sampling variance.

There are many uses of the variance of different LD

measures. For example, the LD contrast method of

Nielsen et al11 uses Var[D] in the test statistic. Weir17 solves

mean no disease
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97.5% no disease

97.5% disease

Figure 3 (a) Produced from 10000 replicates per data point; no disease model has equal penetrances; recessive disease model parameters are
f11¼0.10, f12¼ f22¼0.001; the general population haplotype frequencies are p11¼0.10, p12¼0.05, p21¼0.05, p22¼0.80. (b) Produced from 10000
replicates per data point; no disease model has equal penetrances; additive disease model parameters are f11¼0.09, f12¼0.05, f22¼0.01; the general
population haplotype frequencies are p11¼0.10, p12¼0.05, p21¼0.05, p22¼0.80.

Linkage disequilibrium under disease models
SJ Schrodi et al

218

European Journal of Human Genetics



for this quantity,

Var½D� ¼1

n
½p1�ð1� p1�Þp�1ð1� p�1Þ þ ð1� 2p1�Þ

�ð1� 2p�1ÞD�D2�
ð21Þ

Substitution of allele frequency and D values from disease-

affected samples enables the calculation to be made for

Var½ ~D�. Figure 4 shows results comparing the variance in D

between general population samples and samples selected

on the basis of disease phenotype. Hundred diploid

individuals were used in the calculations. Three different

disease models were evaluated: recessive, dominant and

additive, and results are presented as a function of relative

risk. These results show only a mild to moderate departure

from the variance in the general population samples, with

the variance in disease samples being approximately 10–

15% lower at the more extreme relative risks.

Sampling properties under the neutral coalescent
In the previous section, we explored the sampling properties

of haplotypes preferentially or nonpreferentially sampled

from the general population in accord with a disease model.

In those simulations, the unselected haplotype frequencies

were given. One may also be interested in the situation

where those general population haplotype frequencies are

randomized. A simple and flexible method to do so is to

generate the general population haplotype frequencies

under a Wright–Fisher model using a large-sample neutral

coalescent with recombination.18 Although analytic ap-

proximations for population-based two-locus models exist,

extensions to more complicated demographic models are

much more straightforward under a coalescent simulation.

The large-scale coalescent-generated haplotypes constitute

the general population from which disease haplotypes are

sampled according to penetrances. In these simulations,

5000 two-locus chromosomes were generated from which

100 chromosomes were sampled using probabilities propor-

tional to the disease haplotype probabilities. Four different

disease models were explored: dominant, recessive, under-

dominant and additive modes of inheritance. r2 and ~r2 were

calculated for the general population and disease popula-

tion samples. The mean and 0.025 and 0.975 quantiles for

both correlation statistics are reported in Table 2 below for

both the general population and the 100 disease haplotypes.

Under most replicates, the A1B1 haplotype is the most

frequent. Table 2 summarizes this simulation study. When

compared to the analytic results, these neutral coalescent

results appear to corroborate the general patterns of LD with

the distribution of ~r2 being shifted from r2, with the largest

reduction departures being found in recessive and under-

dominant models and the largest inflation departures for

dominant and additive modes of inheritance. Over the

models examined, the 97.5th quantile varies roughly by a

factor of 4. The 95% confidence interval under the high

frequency recessive model is approximately half the value in

the general population (which is close to the sampling

distribution value averaged across models) and the domi-

nant model exhibits slightly greater than a twofold increase

in the 95% confidence interval over the general population.

Discussion
In this paper, we have explored the effect of disease models

on pairwise measures of LD. Analytic work was able to

delineate regions of the parameter space where j ~D1j ¼ jD1j:
Often, the disease population exhibits higher or similar

levels of LD when compared to the general population. As

the affected population is selected based on the presence of

an ancestral segment of DNA harboring the predisposing

variant, this is the most intuitive scenario. However, all

underdominant, some dominant and recessive, and pro-

tective models are capable of generating LD values

substantially below those observed in the general popula-

tion. This has important ramifications for disease mapping

using LD-based methods. For example, a common methodo-

logy is to select a set of markers based on the observed LD

in a region in the general population. The statistical power

for a given sample size can then be estimated. However, if

the LD in the affected population is lower than that in

the general population, statistical power may be greatly

overestimated. This results from the correlation between the

associated allele at the marker and the predisposing allele

being lower than expected based on the observations in the

GP
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Dominant
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Var D under Disease Models
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Figure 4 A comparison between the sample variance in D under
three modes of inheritance: recessive, dominant and additive, and the
sample variance for general population samples. Hundred diploid
individuals sampled. r2¼0.27 in the general population. Minor allele
frequency of 30% at both sites was modeled.
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general population. Because of this, the allele frequency in

the affected population will be less strongly influenced by

the proximity of the predisposing locus and hence the

difference in allele frequency between cases and controls

may be less than expected under the assumption of equal LD

in both populations. In this way, regions of the genome may

be poorly interrogated. A possible way to alleviate these false

negatives is to select a set of markers that potentially provides

high levels of LD under a variety of plausible models.

Sets of tagging SNPs for mapping studies are often selected

to minimize the number of SNPs assayed. That is, a single

SNP may act for a number of other markers for which LD is

high. As most tagging SNP programs are designed for and

applied to randomly selected chromosomes from presum-

ably unaffected individuals for use in disease association

studies, incorporation of these effects may increase the

efficacy of such tagging SNP procedures. This is particularly

true in instances where the level of LD differs substantially

between affected and unaffected individuals or where LD

levels are markedly reduced in affected individuals when

compared to chromosomes randomly drawn from the

general population. Sets of markers based on these assump-

tions may be inadequate for situations where LD is greater in

the affected population. For example, as we have shown,

ignoring LD differences between cases and controls can

produce nonoptimal power calculations.

Hopefully, this work will motivate further exploration of

the impact of different LD patterns on association studies.

For example, it may be possible to develop new statistical

tests based both on the patterns of LD and haplotype

frequency differences between case and control samples that

provides high power to detect disease-predisposing regions.

Any scenario where there is strong selection bias, be it

positive or negative as in the case of a disease, LD may differ.

Detecting such signatures of selection bias will undoubtedly

add to our understanding of human disease etiology.
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Table 2 Disease sampling from neutral coalescent-generated haplotypes

Mean r2 GP 95% range r2 GP f11 f12 f22 mean r2 Dz 95% range r2 Dz

0.01102 (1.2E�7, 0.0925) 0.05 0.005 0.005 0.00609 (0, 0.0469)
0.01012 (1.2E�7, 0.0773) 0.05 0.005 0.05 0.00660 (0, 0.0575)
0.01101 (8.0E�8, 0.0879) 0.05 0.05 0.005 0.01171 (0, 0.1021)
0.01020 (8.0E�8, 0.0871) 0.09 0.05 0.01 0.00912 (0, 0.0815)
0.01039 (1.2E�7, 0.0926) 0.05 0.05 0.05 0.01063 (0, 0.1007)
0.01053 (8.0E�8, 0.0898) 0.005 0.005 0.05 0.01255 (0, 0.1170)
0.01016 (8.0E�8, 0.0836) 0.005 0.05 0.05 0.02597 (0, 0.1909)
0.00946 (9.6E�8, 0.0735) 0.01 0.05 0.09 0.01575 (0, 0.1440)

Distribution of general population LD under a large-scale neutral coalescent and sampling results under disease models is shown. The r2 statistic is
used. Replicates (10 000) were run for each disease model. Parameters of the coalescent simulations were 4Nu¼1.0; number of chromosomes¼5000;
number of segregating sites¼2; 4Nc¼100 across 2500 sites. GP and Dz denote ‘general population’ and ‘disease’, respectively. Average 2-site
heterozygosity of 0.44 in the general population.

Linkage disequilibrium under disease models
SJ Schrodi et al

220

European Journal of Human Genetics


	Pairwise linkage disequilibrium under disease models
	Introduction
	Theory
	Potential impact on power
	Sampling properties given general population haplotype frequencies

	Sampling properties under the neutral coalescent
	Discussion
	Acknowledgements
	References


