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T
he authors Chang et al1 are to be

commended for their efforts to

educate the larger scientific public

about the impact of data quality in com-

plex disease gene mapping. Specifically,

the authors document four types of data

errors that are general to most linkage

studies: errors in phenotype, pedigree

structure, marker information, and mar-

ker genotypes. These authors also pose a

set of excellent questions regarding the

importance of data quality and provide

empirical answers through their experi-

ence with GenNet whole-genome linkage

studies (part of The Family Blood Pressure

Program2).

Among the questions posed are: (i) How

much of the genome is covered by a 10 cM

linkage scan (when data are removed

owing to low genotyping quality or

Mendelian inconsistency)? (ii) Do allele

shifting markers (ie, markers in which

identical alleles are sometimes called

differently because different flanking

primers, allele sizing software, or allele

binning methods have been used when

STR genotyping of a data set is performed

in multiple batches over several years)

affect linkage evidence? (iii) Do family

structure errors significantly reduce link-

age signal? (iv) Is removal of Mendelian

inconsistencies an adequate substitution

for comprehensive data cleaning? The

answers from the GenNet example docu-

ment that comprehensive data cleaning

can result in both the removal of false-

positive evidence of linkage as well as a

potentially substantial increase in linkage

evidence for true positives. Perhaps most

important, these authors (as other authors

have recently carried out3) provide a

comprehensive protocol that helps guar-

antee good data quality and therefore

maximal power to localize disease genes

for complex traits.

This work raises the larger question of

allocation of resources in the era of whole-

genome mapping for complex diseases.

With the advent of genotyping technolo-

gies that can produce genotype calls for

hundreds of thousands of genotypes

across the whole genome4 and a widely

publicised successful gene localisation for

age-related macular degeneration using

these technologies,5 there is an under-

standably strong attraction to thinking

that methods that involve increasing data

quantity will be a panacea for the ills of

unsuccessful complex gene mapping stu-

dies. However, there are a number of

factors involved in designing successful

gene-mapping studies.

We illustrate three major factors and

their relationship schematically in Fig-

ure 1. The figure is a triangle, with each

vertex representing one aspect of a study

that must be balanced with respect to the

other two. The vertices are: study cost, in

terms of time and money; data quantity,

which includes the number of subjects for

whom genotype and phenotype (diagno-

sis) information is obtained, and also the

number of genotypes per individual ob-

tained; and data quality, which represents

the accuracy of the genotype, phenotype

(or diagnostic), and other information (eg,

environmental covariates) for each indi-

vidual in the study. To illustrate use of this

figure, consider some examples. If a

research team wants to phenotype large

numbers of individuals and genotype

them, and in addition, wants to insure

high accuracy rates, then the team must
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Figure 1 Graphical representation of balance among the allocation of resources (factors) in
whole-genome mapping studies.
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increase either time or money invested.

Similarly, if a team is working with a fixed

budget (either time-wise or money-wise),

and the team wants to insure high-quality

phenotypes and genotypes, then it will

most likely have to reduce the sample size

studied.

It is critically important to bear these

points in mind before embarking on large-

scale linkage or association studies. Recent

research (including that of Chang et al1)

indicates that sacrificing data quality will

reduce power to detect loci (or equiva-

lently, will increase sample size require-

ments6–10 for a fixed power level) and/or

will shift the apparent location of suscept-

ibility genes,11,12 so that in effect, research

teams may end up trying to find a

‘moving target’. For example, the original

sample size requirements needed if the

data were highly accurate may be insuffi-

cient because accuracy is reduced to

collect individuals in a given time frame.

In summary, the importance of Chang

et al’s1 work cannot be overstated. Data

quality is a critically important factor to be

considered if research teams are to be

successful isolating complex disease loci

in this new era of whole-genome mapping.

As a final thought, this author recom-

mends that, in the balance among the

three factors presented in Figure 1, re-

search teams sacrifice neither data quality

nor data quantity in their searches for

complex trait susceptibility loci. That is,

research teams might consider increasing

cost, especially in terms of time, when

performing their studies. The monetary

costs per year can be kept smaller by

increasing the time in which studies are

completed. With this type of strategy,

teams will have the added advantage that

additional samples collected may be used

as replication for initial linkage and/or

association signals. This strategy has been

employed to successfully localize suscept-

ibility genes for previously thought in-

tractable diseases as schizophrenia.13
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