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The precise diagnosis of cancer type based on microarray data is of particular importance and is also
a challenging task. We have devised a novel pattern recognition procedure based on independent
component analysis (ICA). Different from the conventional cancer classification methods, which are limited
in their clinical applicability of cancer diagnosis, our method extracts explicitly, by ICA algorithm, a set of
specific diagnostic patterns of normal and tumor tissues corresponding to a set of biomarkers for clinical
use. We validated our procedure with the colon and prostate cancer data sets and achieved good diagnosis
(490%) on the data sets studied here. This technique is also suitable for the identification of diagnostic
expression patterns for other human cancers and demonstrates the feasibility of simple and accurate
molecular cancer diagnostics for clinical implementation.
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Introduction
Conventional diagnosis of cancer relies on macro- and

microscopic histology and tumor morphology. This meth-

odology is somewhat subjective and depends on highly

trained pathologists. Furthermore, there is a wide spectrum

in cancer morphology and many tumors are atypical or

lack morphologic features that are useful for different

diagnosis.1 Recent years witnessed an increasing interest

in changing the basis of tumor classification from morpho-

logic classification to molecular genetics-based classifica-

tion. The rapid development of microarray technologies

that can simultaneously assess the expression level of

thousands of genes offers the promise of precise, objective

and systematic human cancer classification using molecu-

lar diagnosis. Many techniques have been used to analyze

gene expression data and have demonstrated the potential

power of expression profiling for tumor classification (see

for review Simon et al2).

Independent component analysis (ICA) is a dimension

reduction technique that uses the existence of indepen-

dent factors in multivariate data and decomposes an input

data set into statistically independent components. ICA

can reduce the effects of noise or artifacts of the signal and

is ideal for separating mixed signals.3 ICA has been used

successfully in electroencephalographic (EEG), magnetoen-

cephalographic (MEG) and functional magnetic resonance

imaging (fMRI) data.4–6 Recently, Liebermeister7 used ICA

for microarray analysis to extract expression modes of

genes. Lee and Batzoglou8 conducted a systematic analysis
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of the applicability of ICA to microarray data. Moreover, a

recent report9 indicated that ICA could improve the

biological validity of the genes identified as differentially

expressed in endometrial carcinoma, compared to other

techniques such as Cyber-T (a Bayesian framework for the

analysis of microarray expression data using t-test, http://

visitor.ics.uci.edu/genex/cybert/index.shtml) and signifi-

cance analysis of microarrays (SAM, http://www-stat.stan-

ford.edu/~tibs/SAM/). In this study, we developed an ICA-

based algorithm for classifying tissues on the basis of gene

expression data. Different from previous methods, our

method identified not only a set of biomarkers but also a

set of specific diagnosis patterns of normal and tumor

samples corresponding to these biomarkers. Using this

method, we analyzed colon and prostate cancer data and

demonstrated that this method outperformed previous

studies.

Data and methods
Microarray data sets

The gene expression data sets from colon and prostate

cancers were investigated in this study. For colon cancer,

the data set is the expression profiles of 2000 genes using

Affymetrix Hum6000 arrays in 22 normal and 40 colon

cancer tissue samples10 (the normalized data set can be

downloaded at http://microarray.princeton.edu/oncology/

affydata/index.html). For prostate cancer, three data sets

were used, which are the expression profiles of 12 600

genes using Affymetrix U95Av2 arrays. The first data set

consists of 50 normal and 52 prostate cancer tissue

samples; the second data set includes 10 nonrecurrent

and eight recurrent prostate cancer tissue samples (Depart-

ment of Adult Oncology, Brigham and Women’s Hospital,

Harvard Medical School, Boston, MA 02115, USA).11 The

third data set is an independent data set of nine normal

and 25 tumor prostate samples from another laboratory

(Genomics Institute of the Novartis Research Foundation,

San Diego, CA 92121, USA).12 The normalized data sets can

be downloaded at http://www-genome.wi.mit.edu/MPR/

Prostate.

Mathematical framework of ICA

Given a microarray data set X¼ (xij)m� n¼ (x1,y, xm)
T (T

means transpose) with m rows of genes and n columns of

samples (ie n different experimental conditions), each

element xij in the matrix X corresponds to the ith gene’s

expression level in the jth sample. If the expressions of m

genes are governed by k independent biological processes,

such as ribosome biogenesis, cell cycle, etc, then

S¼ (s1,y, sk)
T (kpm). We assume that the expression of

each gene xi (i¼1,y,m) is a linear combination of the k

independent biological processes sj (j¼1,y, k) with some

unknown mixing coefficients aij: xi¼Sjaijsj, written in the

form of matrix representation
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or

X ¼ AS

A is called the mixing matrix and S is called source signals.

The goal of ICA is to find a matrix W that satisfies the

transformation equation

Y ¼ WX ¼ WAS

W is called separating matrix and Y¼ (y1,y, yk), called

independent components, has statistically independent

components. Generally speaking, Y is a close approxima-

tion of source signal S; if W¼A�1, it achieves perfect

reconstruction Y¼ S. To find such a matrix W, an

important assumption is that at most one source signal

has a Gaussian distribution. This is not a problem for

analyzing biological data based on the fact that the most

typical Gaussian source is random noise and biological

processes are expected to be highly nonrandom, that is,

non-Gaussian; for example, in the regulation of gene

expression, a set of relevant genes are sharply affected

and most other genes are relatively unaffected.8

ICA-based diagnosis algorithm

Our statistical algorithm is a combination of the following

sequential steps.

Data preprocessing Prior to further analysis, log 2 trans-

formation was performed on the colon data. Because too

many genes (12 600) are included in the prostate data, we

first removed those genes whose expression level is less

than 2, retaining the most significant 1662 genes, and then

log 2 transformation was performed.

Sampling For diagnostic purposes, 50% of the samples

are randomly selected from normal and tumor samples as

the training data set and the remaining data constitute the

test data set.

Extraction of independent components The FastICA

program (http://www.cis.hut.fi/projects/ica/fastica/) was

used here. If Xnormal represents the normal training data

set, we performed ICA on the transpose of data matrix

Xnormal and extracted one independent component

ICnormal with dimension m�1 (corresponding to the

largest one and accounting for 70% of the variance).

Similarly, if Xtumor represents the tumor training data set,

we performed ICA on the transpose of data matrix Xtumor

and extracted one independent component ICtumor with

dimension m�1 (corresponding to the largest one and
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accounting for 70% of variance). Here, after the experi-

mental noise was reduced by ICA, we expected ICnormal and

ICtumor to represent the characteristic expression profile of

all genes in normal samples and tumor samples, respec-

tively, for extraction of two diagnostic patterns. The

MATLAB code using the FastICA program was as follows:

ICnormal ¼FASTICAðX0
normal;

0 lastEig0;1;0 numOfIC0; 1Þ
ICtumor ¼FASTICAðX0

tumor;
0 lastEig0;1;0 numOfIC0;1Þ

Biomarkers selection/test data set validation We first

calculate the ratios using independent component values

(loads):

Ri ¼ ICi
tumor

ICi
normal

; i ¼ 1; :::;m

Then, we performed biomarker selection. Specifically, the

selection procedure of a subset of biomarkers starts from a

pair of genes with the smallest and the largest R values, for

example, genes i and j, and the corresponding loads in two

independent components ICnormal and ICtumor constitute

two discriminant vectors:

Vnormal ¼
ICi

normal

IC
j
normal

 !
; Vtumor ¼

ICi
tumor

IC
j
tumor

 !

Subsequently, the two vectors are used for discriminant

analysis: taking a sample from the test data set (ie the

remaining 50% of the data), the expression intensities of

the above two genes constitute a test vector:

Vtest ¼ intensityi

intensityj

	 


Calculate its distance (this refers to the Euclidean distance

between vectors) with the two discriminant vectors

obtained above. If the distance between Vtest and Vnormal

was smaller than the distance between Vtest and Vnormal,

then the sample is classified as normal sample, otherwise as

tumor sample. After all samples from the test data set had

been evaluated following this procedure, we checked

whether the classification rate based on the two genes

achieved any user-predefined classification accuracy

(eg 90–100%). If so, both genes were selected as biomarkers,

if not, we included onemore pair of genes in the study, those

having the second smallest and the second largest R values.

We then checked whether the four genes could achieve the

user-defined classification accuracy in the same way as

above. If so, the four genes were selected as biomarkers, if

not, the whole procedure was repeated till we reached a set

of genes achieving the required classification performance

(90–100%). They were then selected as biomarkers.

Leave-one-out crossvalidation In order to get an un-

biased estimation of the error rate associated with the

method, a commonly used statistical approach,2 leave-one-

out (or jacknife) crossvalidation, was employed. This

method involves randomly withholding one of the

samples analyzed, including both training and test data

sets, building a predictor based only on the remaining

samples, and then predicting the class of the sample left

out. The process is repeated for each sample, and the

cumulative error rate is calculated. If the final cumulative

error rate was o10%, the leave-one-out crossvalidation was

considered completed, otherwise, we repeated the above

biomarker selection process to get another subset of

biomarkers and did crossvalidation again, till the error

rate was less than 10%.

Diagnostic pattern After the above steps were com-

pleted, we obtained a final set of biomarkers that meet

our two requirements: (a) the classification accuracy is

490% for the test data set; (b) the error rate is o10% in

leave-one-out crossvalidation. The loads of these biomar-

kers in the original independent component obtained from

normal (respectively, tumor) samples ICnormal (ICtumor)

constituted the diagnostic pattern for normal (respectively,

tumor) tissues.

Diagnosis Given a sample from the test data set or other

independent data set, we simply calculate its distance

(Euclidean distance between vectors) to the two diagnostic

patterns obtained above, then compare the two distances.

If the sample under investigation is closer to the normal

pattern than to the tumor pattern, then it is diagnosed as

normal sample, otherwise as tumor sample.

The schematic illustration of ICA-based diagnosis proce-

dure is shown in Figure 1.

Results
We first applied our algorithm to colon microarray data

and obtained three diagnostic models (Table 1). The correct

prediction rate ranged from 90 to 100%. This means that

we could achieve 100% prediction accuracy using 10 genes.

Among these, five are overexpressed in normal tissues:

1843 (Gelsolin), 1423 (Myosin regulatory light chain 2),

897 (Complement factor D), 1387 (Phosphoenolpyruvate

carboxykinase) and 1635 (Vasoactive intestinal peptide

(VIP)); the remaining five genes are upregulated in tumor

tissue samples: 1810 (Pancreatic stone protein (PSP)), 1473

(Translational initiation factor 2), 1771 (Aspartyl-tRNA

synthetase alpha-2), 1935 (Wee1 hu gene) and 1671

(Human monocyte-derived neutrophil-activating protein

(MONAP)).

Secondly, we applied our algorithm to prostate cancer

data. Similarly, we built three diagnostic models (Table 2).

Interestingly, the fewer genes in model 3 achieve higher

prediction accuracy as compared to model 2. This shows

that we could use as few as four genes to completely
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diagnose test samples with 100% accuracy. These four

genes included two downregulated genes in tumor samples

(9850 (Human adipsin/complement factor D) and 6715 (an

unknown gene from human melanocyte)) and two upre-

gulated genes in tumor samples (10875 (Human prostate

carcinoma tumor antigen (PCTA-1)) and 6185 (Serine

protease hepsin)).

To test the usability of our algorithm, we next applied

the present three diagnostic models to prostate cancer to

diagnose an independent data set of nine normal and 25

tumor prostate samples from Genomics Institute of the

Novartis Research Foundation, San Diego, CA 92121,

USA.12 There was a nearly 10-fold difference in the overall

microarray intensity between this data set and the previous

data set. There was a small difference in the number of

genes in the study although they were using the same

Affymetrix Hum95Av2 array:11 12600 genes in the previous

data set and 12626 genes in the present data set; so the 26

extra genes were removed (see Supplementary Informa-

tion). As an illustration, the diagnostic process using model

2 in prostate cancer (Table 2) was performed as follows:

(a) Given a sample from the independent data set of nine

normal and 25 tumor prostate samples, for example, No. 4

normal sample, we included the expression values of only

six genes in model 2 (9850, 11052, 4525, 5398, 4483, 6185)

(Table 2) as a test vector:

G
E
N
E
S

Phase I: pattern discovery

Samples

Normal
samples

 Tumor
samples

50% 50%

T
R
A
I
N

T
R
A
I
N

ICA on samples
extract one IC
respectively

Search a sub set of genes that
best distinguish cancer from
non-cancer

N T

Diagnostic pattern for normal
(N) and tumor (T) samples

Normal Tumor

Diagnostic
obtained

patterns
in phase I

N Td1 d2

d2 > d1 d1 > d2

distance calculation

Given one sample

Phase II: pattern diagnosis

T
E
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samples

50% tumor
samples

  Or other
independent
  samples

Figure 1 Scheme for ICA-based diagnostic method (see text for details).
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Table 1 ICA-based diagnosis for colon cancer

Model 1 (four genes)

Gene GenBank no. Gene name

1423 J02854 Myosin regulatory light chain 2, smooth muscle isoform (human); contains element
TAR1 repetitive element

1635 M36634 Human vasoactive intestinal peptide (VIP) mRNA, complete cds
1582 X63629 Homo sapiens mRNA for p cadherin
1671 M26383 Human monocyte-derived neutrophil-activating protein (MONAP) mRNA, complete cds

Diagnostic expression patterns for the above four genes
Normal [127.6722,49.4295,16.6206,22.7769]
Tumor [46.7113,23.7047,42.7040,71.5064]

Diagnostic result using the above patterns on the test data set
90.90% for normal, 90% for tumor, 90.30% for normal and tumor, 91.90% for crossvalidation

Model 2 (eight genes)
Gene GenBank no. Gene name

1843 H06524 Gelsolin precursor, plasma (human)
1423 J02854 Myosin regulatory light chain 2, smooth muscle isoform (human);

contains element TAR1 repetitive element
1635 M36634 Human vasoactive intestinal peptide (VIP) mRNA, complete cds
897 H43887 Complement factor d precursor (Homo sapiens)

1679 X53586 Human mRNA for integrin alpha 6
1771 J05032 Human aspartyl-tRNA synthetase alpha-2 subunit mRNA, complete cds
1582 X63629 Homo sapiens mRNA for p cadherin
1671 M26383 Human monocyte-derived neutrophil-activating protein (MONAP) mRNA,

complete cds

Diagnostic expression patterns for the above eight genes
Normal [62.4920,104.6407,46.8053,135.4484,24.3357,23.5034,20.0135,25.1781]
Tumor [30.2676,46.8702,25.0354,65.2678,47.2061,46.1609,38.3034,63.5447]

Diagnostic result using the above patterns on the test data set
100% for normal, 95% for tumor, 96.80% for normal and tumor, 91.90% for crossvalidation

Model 3 (10 genes)
Gene GenBank no. Gene name

1843 H06524 Gelsolin precursor, plasma (human)
1423 J02854 Myosin regulatory light chain 2, smooth muscle isoform (human);

contains element TAR1 repetitive element
897 H43887 Complement factor d precursor (Homo sapiens)
1387 L05144 Phosphoenolpyruvate carboxykinase, cytosolic (human);

contains Alu repetitive element; contains element PTR5 repetitive element
1635 M36634 Human vasoactive intestinal peptide (VIP) mRNA, complete cds
1810 M27190 Homo sapiens secretory pancreatic stone protein (PSP-S) mRNA, complete cds
1473 R54097 Translational initiation factor 2 beta subunit (human)
1771 J05032 Human aspartyl-tRNA synthetase alpha-2 subunit mRNA, complete cds
1935 X62048 Homo sapiens Wee1 hu gene
1671 M26383 Human monocyte-derived neutrophil-activating protein (MONAP)

mRNA, complete cds

Diagnostic expression patterns for the above 10 genes
Normal [72.3189,124.4136,146.2203,167.9398,52.1177,35.6766,28.7323,24.7062,14.4821,24.7422]
Tumor [33.9585,55.5687,67.7242,76.8941,28.8660,80.8570,64.7676,55.0130,31.3784,79.4569]

Diagnostic result using the above patterns on the test data set
100% for normal, 100% for tumor, 100% for normal and tumor, 91.90% for crossvalidation

The ICA-based algorithm (see text for details) was sequentially performed three times on a colon cancer data set, and the expression profiles of 2000
genes using Affymetrix Hum6000 arrays in 22 normal and 40 colon cancer tissue samples10 and three diagnostic models (models 1–3) were obtained.
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Table 2 ICA-based diagnosis for prostate cancer

Model 1 (four genes)

Gene GenBank no. Gene name

9850 M84526 Human adipsin/complement factor D mRNA, complete cds
4525 Y16961 Homo sapiens mRNA for KET protein
9131 M14083 Human beta-migrating plasminogen activator inhibitor I mRNA, 3 end
6185 X07732 Human hepatoma mRNA for serine protease hepsin

Diagnostic expression patterns for the above four genes
Normal [97.8025,21.2944,11.1016,22.9815]
Tumor [19.3706,8.1072,17.1805,58.8879]

Diagnostic result using the above patterns on the test data set
92% for normal, 92.30% for tumor, 92.20% for normal and tumor, 90.20% for crossvalidation

Diagnostic result using the above patterns on an independent data set from another laboratory
100% for normal, 84.00% for tumor, 88.20% for normal and tumor

Model 2 (six genes)
Gene GenBank no. Gene name

9850 M84526 Human adipsin/complement factor D mRNA, complete cds
11052 J03242 Insulin-like growth factor 2
4525 Y16961 Homo sapiens mRNA for KET protein
5398 X70940 Homo sapiens mRNA for elongation factor 1 alpha-2
4483 AJ130733 Homo sapiens mRNA 2-methylacyl-CoA racemase
6185 X07732 Human hepatoma mRNA for serine protease hepsin

Diagnostic expression patterns for the above six genes
Normal [84.3491,50.3947,17.3769,10.2916,23.2056,20.3746]
Tumor [21.8991,18.1287,9.0217,15.4336,44.8240,58.2788]

Diagnostic result using the above patterns on the test data set
100% for normal, 92.30% for tumor, 96.10% for normal and tumor, 90.20% for crossvalidation

Diagnostic result using the above patterns on an independent data set from another laboratory
100% for normal, 96.00% for tumor, 97.10% for normal and tumor

model 3 (four genes)
Gene GenBank no. Gene name

9850 M84526 Human adipsin/complement factor D mRNA, complete cds
6715 N36638 Unknown
10875 L78132 Human prostate carcinoma tumor antigen (PCTA-1) mRNA, complete cds
6185 X07732 Human hepatoma mRNA for serine protease hepsin

Diagnostic expression patterns for the above four genes
Normal [84.0281,15.5463,8.9924,27.3297]
Tumor [23.7969,8.0311,11.8138,59.2811]

Diagnostic result using the above patterns on the test data set
100% for normal, 100% for tumor, 100% for normal and tumor, 90.20% for crossvalidation

Diagnostic result using the above patterns on an independent data set from another laboratory
100% for normal, 88.00% for tumor, 91.20% for normal and tumor

The ICA-based algorithm (see text for details) was sequentially performed three times on prostate cancer data sets, and the expression profiles of
12 600 genes using Affymetrix U95Av2 arrays in 50 normal and 52 prostate cancer tissue samples and11 three diagnostic models (models 1–3) were
obtained.
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Vtest ¼

223
298
123
39
101
142

0
BBBBBB@

1
CCCCCCA

(b) Calculating its Euclidean distances to two diagnostic

expression patterns on the six genes of interest (Table 2)

Vnormal ¼

84:3491
50:3947
17:3769
10:2916
23:2056
20:3746

0
BBBBBB@

1
CCCCCCA
; Vtumor ¼

21:8991
18:1287
9:0217
15:4336
44:8240
58:2788

0
BBBBBB@

1
CCCCCCA

we obtained the distance between Vtest and Vnormal d1¼
336 and the distance between Vtest and Vtumor d2¼377.

(c) Obviously, d24d1, so we can diagnose the No. 4

sample as a normal sample, as expected.

The diagnostic results using three models on the

independent data set are summarized in Table 2 (the

diagnostic data are available in Supplementary Informa-

tion). The results reveal that our three models also perform

well with high accuracy (88.2% for model 1, 97.1% for

model 2 and 91.2% for model 3).

Finally, we applied the present three diagnostic models to

diagnose 10 nonrecurrent and eight recurrent prostate

cancer samples. The result demonstrates that our three

models also have very good performance: 88.9% for model

1, 83.3% for model 2 and 88.9% for model 3 (the diagnostic

data are available in Supplementary Information). Thus,

our diagnostic model is capable of diagnosing a tumor from

unknown prostate samples including nonrecurrent or

recurrent prostate cancer with excellent accuracy.

However, it remains possible that these apparently good

models were obtained from the data set by chance. We

therefore asked what could be the probability for successfully

obtaining the diagnostic models presented above by chance

alone? To explore this issue, we ran the program 1000 times,

based on 1000 permutations of normal and tumor sample

tags. For each permutation, we tried to find a diagnostic

model using the same number of genes (4–6 genes for

prostate cancer and 4–10 genes for colon cancer). The

outcome of this control study was that 21 and 16 of the 1000

permutations generated models with 490% crossvalidation

accuracy for prostate and colon cancers, respectively. This

shows that the probability for obtaining the above diag-

nostic models by chance alone was of the order of 1.6–2.1%.

Discussion
The very large amount of gene expression information and

noisy data provided by microarray technology leads to

difficulties in both basic research and clinical applications.

ICA may be an ideal technique for reducing the dimension

of data and for separating the experimental noise from

expression data.8 The biomarkers selected by our ICA-based

method should be examined for their roles in disease

etiology. A total of 12 and nine different genes were

identified for colon cancer (Table 1) and prostate cancer

(Table 2), respectively. Among these genes, the majority of

colon cancer genes were identified and discussed in

previous studies,13–15 except two genes, Integrin Alpha 6

and Wee1 Hu genes, which are newly identified by the

present ICA study. In contrast, for prostate cancer, only one

gene, Hepsin, was identified and discussed by Welsh et al;12

the remaining eight genes are newly identified by the

present ICA study: Adipsin/complement factor D, KET

protein, Insulin-Like growth factor 2, Elongation factor 1

alpha-2, PCTA-1, Human beta-migrating plasminogen

activator inhibitor I, Alpha-methylacyl-CoA racemase

(AMACR) and an unknown gene from human melanocyte.

These genes have been implicated in human cancers (see

Supplementary Information).

It should be emphasized that the genes identified by ICA

may not be genes with significantly differential expression

between normal and tumor samples. For example, while it

has already been investigated as a possible cause for

predisposition to prostate cancer but without analysis of

its regulation,16 the average expression level of PCTA-1 in

tumor samples is about 1.5-fold its average expression level

in normal samples. Naturally, such a gene will be

eliminated if using the conventional two-fold selection

criteria. While ICA identified this gene as a biomarker, and

model 3 including this gene can achieve 100% classifica-

tion accuracy for prostate cancer (Table 2). In fact, PCTA-1

encodes a member of the galectin family. The galectins

have been implicated in many essential functions includ-

ing development, differentiation, cell–cell adhesion, cell–

matrix interaction, growth regulation, apoptosis and RNA

splicing. PCTA-1 has been considered as a surface marker

associated with prostate cancer.17

Here, we obtained three models for both colon and

prostate cancer. However, other models reached similar

classification accuracy, as Xiong et al18 indicated that the

optimal or near-optimal sets of genes for classifying tumor

and normal tissues are not unique. This just reflects the

complexity of microarray data. We expected, as seen in

Table 1, that the more the genes were included in the

model, the better the accuracy of the classification was. In

contrast, however, Table 2 displays another situation where

a model with fewer genes could get better accuracy (model

3 vs model 2). This prompted us to make further tests:

interestingly, we found that as more genes are included in

the model, the classification accuracy is not systematically

increased as expected. Similar results were found in

previous reports.14,19 This highlights the conclusion that

no correlation between the number of genes and the
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classification accuracy exists. This can be accounted for by

the fact that not all genes are equally relevant to the

normal vs tumor sample discrimination, while the inclu-

sion of more genes introduces more high-dimensional

noise, hence decreasing the classification accuracy. As a

matter of fact, it is a well-known statistical property that too

many feature variables (genes) can harm a discriminator’s

performance.20 This suggests that we should favor methods

that try to extract as few genes as possible as biomarkers.

The present work is an attempt in this direction.

Among the prostate cancer patients, up to 30% of them

undergoing radical prostatectomy will relapse. The chal-

lenge is therefore to identify patients at risk for relapse so

that relevant targeted therapeutics could be focused on

that particular subpopulation. In the present study, by ICA

we identified a few new biomarkers of the disease, and

using their expression patterns we could achieve good

diagnosis for the nonrecurrent/recurrent data set. This

should be helpful for finding robust prognostic markers

that are capable of identifying patients at risk of relapse

following local therapy.

Finally, we compared other techniques using the same

colon cancer data set. Table 3 shows that the present ICA-

based algorithm offers a significant advantage over the

other methods, which classified two subgroups (tumor vs

normal) but do not provide a specific expression pattern of

few genes for diagnosis. In contrast, our method not only

achieves good classification accuracy, but, because it uses

ICA, explicitly extracts a specific expression pattern, thus

allowing one to perform diagnosis for any blind sample

through a small microarray of few genes. As seen above, for

prostate cancer, we have used three different diagnostic

expression patterns, obtained from the first laboratory data

set, to directly diagnose an independent data set from

another laboratory. The performance of the diagnosis was

remarkably consistent. However, we need to explore more

data from different laboratories to validate these diagnostic

models. In conclusion, diagnostic patterns obtained from

as many clinical samples as possible using our ICA-based

method should be undertaken, in order to clinically

provide quantitative diagnostic information for an indivi-

dual cancer patient.
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