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Overdispersion of allele frequency differences
between populations: implications for meta-analyses
of genotypic disease associations
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Methods correcting case–control studies of genetic polymorphisms for unmeasured genetic population
substructure by modelling the variation at a number of variant loci provide no standard and easily
implemented approach to meta-analysis, which is a key to understanding the effects of minor genotypic
risks on complex diseases. A correction of the odds ratio estimate and its confidence interval is shown to be
easy to implement using a mixed effects logistic regression. The method is shown to substantially reduce
bias and to give accurate coverage even when there is substantial overdispersion of allele frequency
differences between populations. Major sequence classes of single-nucleotide polymorphism (SNP) are
likely to act as valid controls for each other, since CpG SNPs did not differ in the extent of population
structure from other SNPs. Agreement among investigators and journals to provide these straightforward
statistics in publications of polymorphism studies will enhance the ability of future investigators to perform
meta-analyses of weak genetic effects across accumulated studies that allow for population structure.
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Introduction
Complex genetic diseases are those with multiple environ-

mental and genetic components contributing to the

cumulative risk. Case–control association studies of genet-

ic polymorphisms in complex genetic disease are in general

difficult to replicate.1 This may in part reflect the low risks

conferred by candidate genes coupled with potential

publication bias of small studies. However, it is important

to eliminate the possibility that some of the contribution

to the heterogeneity in the findings relates to minor

confounding of differences among cases and controls with

genetic substructure (ie the cases are drawn from a slightly

different genetic background from the controls). This can

arise when disease incidence (for genetic or nongenetic

reasons) varies among genetic grouping, and the noncausal

association of a chromosomal region with disease is simply

part of a larger trend in allele frequency differences

between genetic groupings.

There are a number of methods available to correct

estimates of test marker association by using information on

genetic substructure obtained from the frequencies of a

number of other markers. These fall into two broad

categories.2 The first are those based on a ‘Genomic Control’

approach3,4 that provides an appropriate reduction of type I

error by adjusting for the level of difference between

affected and unaffected individuals at the other markers.

The second rely on categorising individuals into genetic

substrata, and estimating risk effects across these strata.2,5 –9Received 30 January 2004; revised 29 June 2004; accepted 23 July 2004
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Standard epidemiological meta-analysis of associations10

usually relies on an estimate of association of outcome

with the risk factor in each study, often expressed as an

odds ratio (OR) in case–control studies and as a relative risk

in prospective studies, and an estimate of the variance of

that association, usually presented as a 95% confidence

interval.11 Methods correcting case–control studies of

genetic polymorphisms4–7 for unmeasured genetic popu-

lation substructure by modelling the variation at a number

of variant loci provide no standard and easily implemented

approach to meta-analysis, which is a key to understanding

the effects of minor genotypic risks on complex diseases.

Often, they are confined to hypothesis testing and do not

directly generate estimates of the OR and confidence

interval: the Genomic Control method3 and the w2-scaling
method4 simply estimate P-values. An alternative approach

is to estimate genetic strata within the population from the

genotypic data and then perform a stratified analysis.5,6

This has the disadvantage that strata and effects are not

simultaneously estimated,7 although this bias may not be

great.2 Secondly, a mild bias in a number of studies will not

be detected as a significant stratification in individual

studies, but such minor biases may accumulate within a

meta-analysis.

Satten et al7 proposed a latent model that considers

stratification and tests of gene effects simultaneously, and

generates estimates of ORs and confidence intervals. This

method is not currently implemented within a standard

statistical package. A Markov chain Monte Carlo approach

also simultaneously models structure while assessing the

risk conferred by a test gene, and the authors point out that

probabilities of association may be readily combined across

studies in a meta-analysis, although the estimate of the

extent of risk, such as the OR, is not generated by these

analyses.8 In contrast, logistic regression analyses are ideal

for simple extensions considering covariates.12 We show

here that they can be easily extended to encompass

analyses that allow for genetic stratification in a simple

and straightforward manner, and investigate the impact of

overdispersion (OD) in allele frequency differences among

strata on the alternative methods.

Methods
Data were simulated in order to determine the perfor-

mance of alternative methods in recovering the true OR.

The simulations were performed in a manner reflecting the

typical genetic analysis of common disease: considering a

set of possible test markers drawn from a distribution of

various allele frequencies, and a random set of unlinked

markers drawn, which have a similarly varying set of allele

frequencies. In order to reflect a model of the underlying

process of ascertainment of test markers, markers were

simulated in two strata having no effect on disease, and a

second ascertainment step enriched for cases carrying the

risk allele at a level appropriate for a particular OR value.

We simulated two strata, A and B, both having the same

underlying OR but differing in disease prevalence (0.05 and

0.2, respectively), reflecting the differences in disease

incidence seen for common diseases such as hypertension

in different major ethnic groups.13 In all, 30 markers were

simulated with a mean frequency difference of 10% in the

two populations. For the first population, allele frequencies

were drawn from normal distributions using the popula-

tion-specific mean (0.55) and SD (0.03). This mean and

standard deviation were the values observed in a real set of

markers reported in a study14 of 114 single-nucleotide

polymorphisms (SNPs) in five genetically divergent popu-

lations. For the second population, the allele frequency was

simulated as that population mean plus the mean allele

frequency difference, where the mean allele frequency

difference was drawn from a normal distribution using the

sample mean allele frequency difference and SD. From

these markers, for each simulation one was randomly

chosen to be the test marker. Separate simulations were

performed with OR set at 1.0, 1.1, 1.4 and 1.7. Expected

frequencies for the allele of interest were calculated for a

population of 500 cases and 500 controls sampled from

subjects assigned carrier status based on disease risk and

the allele frequency attributed a particular population.

Samples were randomly drawn assuming a given prob-

ability of the marker frequency in each stratum. The

remaining 29 markers were then sampled assuming an

underlying OR of 1.0 in each subpopulation. For each value

of test marker OR, a separate simulation was performed

with a different level of OD of allele frequency differences.

In simulation OD1, the allele frequency differences were

identical (0.10) in all markers (ie no OD). This case is

clearly not realistic and is presented for illustrative

purposes only. In simulations OD2–OD5, there was an

increasing variability of the underlying allele frequency

differences (standard deviation of allele frequency differ-

ences of 0.01, 0.02, 0.03 and 0.04, respectively) for the two

subpopulations, introducing increased OD. Each simula-

tion was performed 1000 times. The advantage of this

simulation approach is that the underlying population

structure for both test and random genes is the same, while

the imposed enrichment of the test allele among cases

directly reflects the kind of enrichment that results from

sampling of cases. Four sets of simulations were considered

with different degrees of population substructure (between

7 and 15% mean differences in allele frequencies between

strata).

The simulation approach we adopted here was somewhat

simplistic, manually specifying mean allele frequency

differences between the two populations, and then in-

creasing the dispersion of allele frequency differences.

Alternative simulations based on normal-binomial or beta-

binomial distributions could provide a better fit to real
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data;15 however, these models have not been extended to

incorporate a parameter representing the extent of disper-

sion of allele frequency differences, which we wished to

investigate here.

We fitted a mixed effects logistic analysis16,17 in which

the log of the OR varied randomly between markers with a

mean and variance that we estimated from an analysis of

the random markers. The bias due to hidden stratification

was approximated by the estimated mean. When looking

at the test marker, we used a fixed effect logistic regression

but used the bias correction to adjust the estimate of the

log(OR). To allow for OD among test markers, the variance

of this bias-corrected estimate was increased by the

estimated between-marker variation in log(OR). We calcu-

lated 95% confidence intervals for the log(OR) using the

1.96 multiplier. In our practical implementation of this, we

arbitrarily assigned the allele that was more frequent

among the cases as the risk-conferring allele, yielding

estimates of OR equal to or exceeding 1 in all cases. The

data for each of the random markers were analysed

separately using an ordinary logistic regression, yielding

estimates of the marker-specific log-odds bi and its

variance:

Vi ¼ Varðb̂biÞ

Results were combined to estimate

b̂brandom ¼
X

b̂bi=n

and

Varðb̂brandomÞ as
X

Vi=n
2

A logistic regression of the test marker ignoring informa-

tion from the n random markers was used to estimate the

logit coefficient bcrude and its variance Vcrude. The corrected

logit coefficient was estimated as

b̂badjust ¼ b̂bcrude � b̂brandom

Ignoring ODnod, the confidence interval of the adjusted

OR is equivalent to that of the crude OR, inflated by the

variance of the bias estimated from the random genes.

CInod ¼ exp ½b̂badjust � Za=2 � Vbnod	

where

Vbnod ¼ Vb crude þ
X

Vi=n
2:

The confidence interval of the OR allowing for the

assumption that the test marker is sampled from an OD

distribution (CIod) is estimated as

CIod ¼ exp½b̂badjust � Za=2 � Vb adjust	

where

Vb adjust¼ ¼ Vb crude þ
X

ðb̂brandom � b̂biÞ2=ðn� 1Þ �
X

Vi=n

þ
X

Vi=n
2

The above models are equivalent to a mixed effects logistic

regression model,17 where gene status (fixed or random)

has a fixed effect, and carrier status represents the random

effect.

The Reich and Goldstein w2-scaling method4 was calcu-

lated, as well as the frequentist implementation of the

Genomic Control approach.3 The two-step stratification

approach of structured association method by Pritchard

and Donnelly5,6 was also attempted for a subset of

simulations. Analysis used the general-purpose statistics

package, STATA 8.2 (Statacorp, College Station, TX, USA;

Stata Corporation, 2003). We considered the impact of the

number of markers used in the correction on the inferences

(15, 20 or 29 random markers). STATA code used to

generate simulations and perform the analyses, along with

the simulated data sets, are available on request from the

authors.

Results
As expected (data not shown), the ORcrude was linearly

proportional to the true OR used in the simulations. When

the true OR of the test marker is 1.0, there is a clear

problem with the uncorrected ORcrude, with a rejection rate

of 38% rising to a rate of 57% when there is a higher degree

of simulated OD (Table 1). The five simulation conditions

(OD1–OD5) represent differing degrees of OD of allele

frequency differences, with OD1 representing a constant

difference across all markers, and with OD3 most closely

Table 1 % Coverage of null hypothesis at Pr0.05 over 1000 simulations when the true OR is 1.0, with correction for
stratification using 29 random markers

Simulation SD of allele frequency differences ORacrude ORaadjusted Coverage of true hypothesis

CIcrude CInods CIods w2-scaling (ref.) Genomic Control (ref.)

OD1 0.00 1.16 1.00 62 95 93 100 94
OD2 0.01 1.17 1.00 62 90 95 99 94
OD3 0.02 1.17 1.00 59 77 94 98 94
OD4 0.03 1.19 1.01 54 63 95 97 93
OD5 0.04 1.23 1.00 43 45 93 97 94

aGeometric mean.
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resembling the observed variation in allele frequency

differences seen in Goddard et al.14 Three of the methods

(ORadjust, w
2-scaling and Genomic Control) that correct for

population structure (using information on the random

markers) give a reasonable coverage of the true hypothesis

compared to the uncorrected analysis (Table 1). The

w2-scaling method appears generally more conservative

than the other two tests, which is to be expected.4 w2-
scaling has a slightly reduced coverage of the true hypoth-

esis with an increase in the variance of allele frequency

differences between populations. The Genomic Control

method performs well regardless of the level of OD, as does

the ORadjust method, suggesting that both methods are

reasonably robust in the presence of OD (Table 1). Taking

OD3 as a realistic level of OD, ORadjust has good coverage of

the true hypothesis (Table 1) and minimal bias: for a true

OR¼1.0, 1.1, 1.4 and 1.7, the estimated ORadjust values are

1.00, 1.10, 1.40 and 1.70, whereas for the uncorrected

values ORcrude are 1.17, 1.29, 1.63 and 1.98. For simulations

at higher ORs, there is an adequate coverage of the true OR

under different levels of OD, with the general trends seen

in Table 1 being seen again (Table 2 and Figure 1). While

the Genomic Control method may also be providing

adequate coverage, this cannot be directly assessed since

it does not estimate confidence intervals.

Simply correcting for effects of random markers without

modelling OD (CInod) noticeably underestimated the

variance in all situations except the trivial case (OD1)

where allele frequency differences between populations

were the same (0.10) for all markers. Thus, in simulation

OD3 (Tables 1 and 2) the coverage drops from 95% (CIod) to

around 80% (CInod). This provides a simple illustration of

the need to allow for OD in the variance in allele frequency

differences when estimating the variance of the adjusted

OR.

We investigated whether performance was sensitive to

the number of random markers chosen. As the number of

random markers falls, estimates of the between-marker

variation in the log(ORs) become less precise leading to

poorer coverage (Table 3). However, it is possible to

improve the weakened coverage by replacing the 1.96

multiplier with the 97.5th upper percentile of a t-distribu-

tion with appropriate degrees of freedom (eg 2.26 for 10

random markers with nine degrees of freedom, yielding

94% coverage). For most purposes, the number of random

genes is likely to be large enough so that this modification

is not necessary. When less than 30 markers are used, the

consequent increase in the confidence interval illustrates

in part the value of choosing a large enough number of

random markers. While within the situation that we

simulated around 30 markers appears sufficient, it is likely

that the more complex the pattern of stratification, the

greater the number of markers that will be required, and

recent authors have suggested at least 65 random mar-

kers.18,19

We also investigated whether the correction worked well

when different levels of stratification were simulated.

Table 4 illustrates a number of alternative scenarios that

were achieved by modifying the mean allele frequency

differences and disease incidence. Even when the stratifica-

tion is increased, the method still appears to provide an

unbiased estimate of the OR and a reasonable coverage.

It is possible that certain classes of SNP may display

greater allele frequency differences between populations,

Table 2 % Coverage of true hypothesis (that OR¼1.4) at Pr0.05 over 1000 simulations when the true OR is 1.4, with
correction for stratification using 29 random markers

Simulation SD of allele frequency differences ORacrude ORaadjusted Coverage of true hypothesis

CIcrude CInod CIod

OD1 0.00 1.62 1.40 64 95 94
OD2 0.01 1.63 1.40 63 91 95
OD3 0.02 1.63 1.40 60 80 95
OD4 0.03 1.65 1.40 55 65 95
OD5 0.04 1.69 1.38 42 46 94

aGeometric mean.

Figure 1 % Coverage of the true hypothesis by the 95%
confidence intervals for estimates of the OR. Circles: crude
OR; triangles: adjusted OR, without modelling OD in
estimates of confidence intervals; squares: adjusted OR,
allowing for OD. Results for simulations of true OR¼1.0
(solid symbols) and of true OR¼1.7 (white symbols).
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reflecting differences in the dynamics of their mutation

and selection constraints over the evolutionary history of

populations. Allowing for any such identified heterogene-

ity could permit matching of an SNP to control genes with

similar population structure dynamics. We looked at one

class of SNPs: those involving a CpG dinucleotide poly-

morphism. CpG dinucleotides are hot-spots for mutational

change,20 and therefore it is possible that C/T variant SNPs

followed by a G may show differing levels of stratification,

given the likely differences in their population history

dynamics. The inbreeding coefficient Fst
21 provides an

index of the extent to which a variant is specific to a

population. We compared African-Americans and Cauca-

sians for the frequency distribution of Fst values for each of

13 802 clearly biallelic SNPs type in Caucasian, Asian and

African-American populations from the June 2002 release

of the Allele Frequency Project of the SNP consortium.22 Of

these SNPs, 4329 were associated with the loss or gain of a

CpG dinucleotide. We could not detect any significant

difference in Fst values for Caucasian and African-Amer-

icans between CpG and non-CpG SNPs, as determined by

Wilcoxon’s rank-sum test (P¼0.85). This finding suggests

that population structure differences are dominated by

drift, rather than by mutation. Given the large sample size,

it is likely that different sequence classes of SNPs show

similar levels of population substructure, and it is accep-

table to use CpG SNPs to control for the population

structure of non-CpG SNPs, and vice versa.

Discussion
This study supports the views of previous commentators23–25

that population substructure need not be a major problem

in genetic case–control studies. OD of allele frequencies

can be adequately modelled by the Genomic Control

method3 if only significance testing is required, while

calculation of ORadjust and CIod are appropriate to provide

estimators of adjusted risk and confidence interval, which

are required for meta-analyses. Major sequence classes of

SNPs appear to have similar population structure, and can

therefore be corrected for in a similar manner . Thus, OD of

allele frequency differences can be adequately accounted

for using standard statistical approaches. The one context

in which careful modelling is most important is in the

analysis of very modest genetic risks. In this situation,

conclusions can usually only be drawn after meta-analyses

of many studies.10 Therefore, any statistics reporting

adjusted risks corrected for population structure should

be in the form of ORs and confidence intervals, such as the

ORadjust and CIod values proposed here, which may then

form the basis for future meta-analyses.10

While allele frequency differences among subpopula-

tions are likely to be dominated by the effects of genetic

drift, selection processes may distinguish some subsets of

SNPs. Thus, certain groups of candidate genes may show

more marked frequency differences between populations.

Genes involved in pathogen responses (such as HLA

variants26) show marked allele frequency differences

among populations, and where a candidate has been

drawn from such a group of genes, a random set of control

genes may be less appropriate than a parallel group of

genes displaying similar levels of genetic or geographic

stratification. While this is ideal, it may not be easy to

define, and the first-order correction with random genes is

probably sufficient to reduce the genetic confounding of

association studies by population substructure to an out-

side possibility. Rare polymorphism frequencies may be

Table 3 Impact of reducing the number of random markers on the estimation and coverage of OR (simulated OR¼1.0)

Simulation Number of random markers considered ORacrude ORaadjusted % Coverage of true hypothesis

CIod

OD3 29 1.17 1.00 94
OD3 20 1.19 1.00 93
OD3 15 1.20 1.02 91
OD3 10 1.18 1.00 91

aGeometric mean.

Table 4 Impact of different levels of stratification on the estimation and coverage of adjusted OR (simulated OR¼1.0).

Simulation level Allele frequency difference Fst ORacrude ORaadjusted % Coverage of true hypothesis

Mean SD CIod

OD3 0.151 0.02 0.040 1.290 0.999 94.1
OD3 0.110 0.02 0.022 1.180 0.998 94.2
OD3 0.074 0.02 0.011 1.020 0.998 93.4
OD3 0.071 0.02 0.009 1.057 0.998 93.4

aGeometric mean.
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more subject to drift than common polymorphisms, and it

will be of interest to determine to what extent, if any, rare

polymorphisms exhibit greater population stratification

and whether this will provide a more critical situation

for confounding of genetic association by population

structure.

We have demonstrated that ORadjust with CIod provides

efficient estimates of significance and has good coverage.

Since this can be readily calculated by statisticians without

extensive training in specialised genetics software, we

propose that calculation of adjusted ORs using the

methods outlined here or through careful robust modelling

of population structure7 be adopted as a standard.

Presentation of such statistics provides sufficient informa-

tion for future meta-analyses10 of test marker main effects

on disease, without the need to reanalyse the random

markers within the meta-analysis. We considered a

straightforward balanced design with equal numbers of

observations per marker in which carrier status was the

only risk factor. However, mixed effects regression can be

used for complex analysis with unbalanced designs, multi-

ple fixed and random effects and data missing at random.27

Several software packages implement mixed logistic regres-

sion including SAS Proc NLMixed, MIXNO and

MlwiN.17,28 –30

More recently, it has been indicated that sophisticated

Markov chain Monte Carlo modelling of population

structure effects provides an opportunity to permit meta-

analyses,8 in principle, with consideration of covariates.

The main advantage of the simpler approach suggested

here is that the model fitting is clearer to mainstream

statisticians, allowing the usual modelling of covariates,

and may be more readily interpreted by nonstatistical

geneticists.

Future meta-analysis of genetic association studies is best

served by relatively straightforward statistical estimates

with a clear basis. Thus, the methods proposed here can

serve to facilitate the maximum value of meta-analyses of

multiple diverse data sets. We propose that authors of

publications and journals should favour the routine

reporting of ORadjust and CIod, in order to facilitate future

literature-based meta-analyses10 across various studies.

Such meta-analysis is likely to be reasonably robust

in the face of divergent population structures among

studies, as well as different choices of random or control

markers. It will be of interest in future evaluations of such

methods to compare the performance of ORadjust and

structure-based methods (eg Hoggart et al8) in meta-

analysis, ideally of a number of large real data sets as these

become available.
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