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To study the role of genetic factors in the etiology, susceptibility, or severity of disease, several methods
are available. In a transmission disequilibrium test, genotypes of cases are compared to those of their
parents to explore whether a specific allele, or marker, at a locus of interest appears to be transmitted in
excess of what is expected on the basis of Mendelian inheritance. Such apparent excess transmission
indicates that cases are being selected for that allele, thereby providing evidence that this allele is a risk
factor for disease. In case–control studies, genotypes of cases are compared to those of controls from the
same population to identify whether a specific allele is associated with disease. If so, either the allele at this
locus or one in linkage disequilibrium with it may be causally related to the etiology of the disease. Here,
we discuss the problem of combining a transmission disequilibrium test and a case–control comparison, in
order to integrate all available information, and thereby increase statistical power. As the same cases are
used in both approaches, the two results are not independent. However, parents of cases can be
independently compared to controls. Both the issue of testing for a genetic effect and the estimation of
relative risks under the multiplicative model using generalized logistic regression are discussed.
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Introduction
Suppose that a specific disease or medical condition is

under the genetic control of an autosomal locus. This locus

may be known or suspected (ie a candidate gene),1,2 for

example, because its gene products are involved in the

immune response to the disease. Alternatively, the causa-

tive locus may be in close linkage disequilibrium with

another, known, locus (a ‘marker’). A specific allele at the

marker locus may thus appear to be a risk factor for disease,

because it forms part of a haplotype that contains alleles at

other loci that are causally related to the disease; essentially

a form of confounding. The association between marker

and disease may help to identify the causally related

haplotype or locus (to ‘map’ it). In order to explore the

magnitude of this genetic control, two genetic methodo-

logical approaches are commonly used: the transmission

disequilibrium test (TDT) and case–control (CC) studies.

For the TDT we observe genotypes of incident cases of the

condition, and in addition those of their parents or other

close relatives.3 –9 In its original form, triplets composed ofReceived 11 November 2003; revised 7 June 2004; accepted 20 June 2004
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a case and his/her two parents are observed, and it is tested

whether a specific allele at a locus of interest is transmitted

in excess of what is expected on the basis of Mendelian

inheritance. If so, this would constitute evidence that the

sample of cases is enriched for this allele due to an enhanced

propensity to becoming a case. For the case–control

methodology, one similarly identifies incident cases, and

in addition one samples controls from the same background

population as cases.10,11 Again, enhanced susceptibility

would increase the prevalence of the suspected allele in

the sample of cases. A comparison of these two methodo-

logical approaches (CC and TDT) has recently been

published.12 This comparison also provides an excellent

overview of the assumptions underlying each approach.

Statistical power of both the TDT and CC approach

depends on sample sizes and the magnitude of the genetic

effect. Often, finding a sufficient number of triplets is a

cause for concern. Combining the two approaches (TDT

and CC), and thereby increasing statistical power, is

possible, either when:

a. In addition to the triplets required for the TDT, genetic

information from suitable controls is available, or

b. in addition to a case–control sample, genotypic infor-

mation on some, but not all, of the cases’ parents are

collected. This may be because of inability to obtain this

information, or because the study was first designed as a

CC study and a TDT component was later added to

confirm associations detected in this study. Thus, in

addition to triplets and controls, genotypes of affected

individuals (‘founder cases’) without information on

parental genotypes are available.

The former situation is expected to occur when a TDT

study is carried out first and controls are subsequently

collected in order to increase statistical power. The latter

situation would normally arise when a CC study is carried

out first and a TDT study is carried out subsequently to

corroborate CC findings. As the TDT cases can be used for

both the TDT and for comparison with the controls from

the CC study, results from these methods are not

statistically independent.

We aim to develop a simple overall estimator of the

impact of the gene on the condition; that is, an estimator

of the relative risk experienced by subjects carrying the

allele of interest. This estimate and its standard error also

provide a test for association, that is a test for whether the

condition may indeed be under the control of the locus of

interest, taking this dependence into account.

Statistical methods
We assume a biallelic polymorphism. One allele is the

presumed risk allele, denoted with a ‘2’, that is suspected to

be associated with a higher disease incidence than the

normal, reference allele, denoted with a ‘1’. Individuals

who are homozygous for the susceptibility allele are

denoted by 2/2, etc.

We denote the relative risk of disease (relative to

homozygotes of the normal allele, ie 1/1) of individuals

with one copy of the susceptibility allele (ie 1/2) by g1 (X1),

and the relative risk of individuals having two copies of the

susceptibility allele (ie 2/2) by g2. We want to estimate g1
and g2 and test the null hypothesis that g1¼ g2¼1. Useful

‘penetrance models’ for the allele, with only one g
parameter, are:

(i) g2¼ g1¼ g41;

(ii) g1¼1 and g2¼ g41;

(iii) g2¼ g1 * g1¼ g * g

These correspond to a dominant, recessive, and multi-

plicative, effect of the susceptibility allele, respectively.13

Maximum likelihood
A possible method of analysis seems to be maximum

likelihood. Assume that controls are drawn from the same

population P from which affected children and possibly

founder cases are recruited. We will denote the population

frequency of the ‘2’ allele in P by p. The three genotypes

1/1, 1/2 and 2/2 occur with probability (1�p)2, 2p(1�p), p2

respectively, assuming Hardy–Weinberg equilibrium

(HWE). We assume the absence of parent-of-origin effects.

That is, we assume alleles inherited from the mother to

have the same effect as alleles inherited from the father.14–16

When such effects are suspected, TDT and CC studies

should neither be compared nor combined, as parents-of-

origin effects cannot be inferred from CC studies.

Using Bayes’ theorem and standard probability calculus,

we can derive expressions for the probabilities of specific

genotypes for the cases and their parents, conditional on

the child being a case (Table 1).

Table 1 Probabilities of mating types and genotypes of
cases

Mating type
Offspring
genotype Probability

Number
observed

1/1, 1/1 1/1 (1�p)4/T n1
1/1, 1/2 1/1 2(1�p)3p/T n2
1/1, 1/2 1/2 2(1�p)3pg1/T n3
1/1, 2/2 1/2 2(1�p)2p2g1/T n4
1/2, 1/2 1/1 (1�p)2p2/T n5
1/2, 1/2 1/2 2(1�p)2p2g1/T n6
1/2,1/2 2/2 (1�p)2p2g2/T n7
1/2, 2/2 1/2 2(1�p)p3g1/T n8
1/2, 2/2 2/2 2(1�p)p3g2/T n9
2/2, 2/2 2/2 p4g2/T n10

T is chosen such that the probabilities add to 1, ie T¼ (1�p)2+2p
(1�p)g1+p

2g2.
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As controls and founder cases are sampled independently

of triplets, and the genotypes of controls are not influenced

by g1 or g2, the likelihood of p, g1, g2 is

PPrðgenotypes of tripletsjoffspring is affected cases; p; g1; g2Þ
�PPrðgenotypes of controlsjpÞ
�PPrðfounder casesjp; g1; g2Þg ð1Þ

that is, the product of three multinomial likelihoods, and

p, g1, g2 can all be estimated by maximizing this likelihood,

under the assumption of HWE.

Let ni (i¼1,y,10) denote the frequencies of the 10

possible mating type/genotype of child combinations

given in Table 1. Analogously, let m1, m2, m3, k1, k2, and

k3 denote the observed numbers of unrelated controls and

founder cases with marker genotype 1/1, 1/2, 2/2, respec-

tively.

Then, it can be shown that the maximum likelihood

estimators (MLEs) are

p̂p¼ m2þ2m3þn2þn4þ2n5þn6þ2n8þn9þ2n10

2ðm1þm2þm3þn1þn1þn2þn3þn4þn5þn6þn7þn8þn9þn10Þ

ĝg1¼
ðk2þn3þn4þn6þn8Þð2m1þm2þ2n1þn2þ2n3þn4þn6þ2n7þn9Þ
2ðk1þn1þn2þn5Þðm2þ2m3þn2þn4þ2n5þn6þ2n8þn9þ2n10Þ

ĝg2¼
ðk3þn7þn9þn10Þð2m1þm2þ2n1þn2þ2n3þn4þn6þ2n7þn9Þ2

ðk1þn1þn2þn5Þðm2þ2m3þn2þn4þ2n5þn6þ2n8þn9þ2n10Þ2

In case for some of the children information on one of

their parents is missing, methods for missing data, such as

the EM algorithm,17 or multiple imputation, can be used.18

For example, under the assumption that the missing

parents are missing at random, missing parents can be

multiply imputed by sampling from the group where both

parents are present, and the child and other parent have

the same genotype as the case under consideration. The use

of missing data techniques that make use of all available

information should typically be more efficient than

treating the case as a founder case by discarding informa-

tion from the present parent. The assumption of random

missingness may not be true; however, when missingness

of the parent depends on whether he/she is also affected.

Alternative factorization of the likelihood
Several problems may arise if the conditions for calculating

the above MLE are not met. First, the population may not

be in HWE. If so, the MLEs of p, g1, g2 may be biased.

However, information on g1 and g2 can be obtained

independent of the Hardy–Weinberg assumption by the

TDT. The TDT does not require this assumption as it

considers transmission of alleles conditional on the parents’

genotypes, and thus does not use the same information as

the MLE does. The difference is perhaps best illustrated by

the fact that the MLE may be calculated from parents and

affected children even if all parents are homozygous,

whereas then the TDT could not be computed. This

robustness with respect to the (HWE) assumptions argues

in favour of the TDT, although obviously the TDT may be

less efficient than the MLE.

Second, while multiple imputation (as described above)

is possible in the context of MLE, it will unfortunately

fail if only one of the parents is available (and thus one

of the parents is missing) for all children. Versatile

methods, for example the 1-TDT, to analyze such data

have been developed, but these appear not to be like-

lihood-based.19 As yet there appears to be no obvious way

of combining the 1-TDT with information from population

controls.

Third, a complication that arose in the context of the

example presented in this paper is that when using the

above MLE all individuals are required to be from the same

population. If not, the concept of population allele

frequency (P) may be futile. Also, stratification, that is, a

mismatch between cases and controls, for example, due to

the two groups containing different mixes of ethnic

groups, should be avoided. In our example,20 the available

control group was entirely ethnically ‘Dutch’, whereas

among the affected children some were of foreign or mixed

descent with the HWE assumption almost certainly not

true. In the likelihood approach, inclusion of ‘foreign’ (ie

not from population P) triplets is not allowed, or should be

taken into account by including additional parameters, for

example, p1 and p2 representing allele frequencies in (at

least) two different populations.

To overcome these problems, we observe that the

likelihood can alternatively be factorized as

fPPr ðcasesjparents of cases; p; g1; g2Þg
�fPPr ðparents of casesjp; g1; g2Þ
�PPr ðcontroljpÞ
�PPrðfounder casesjp; g1; g2Þg

ð2Þ

Thus, the likelihood can be written as the product of two

‘independent’ factors (the two expressions in {}). The first

factor specifies the distribution of the genotype of cases,

conditional on the genotype of their parents, that is, the

TDT in its likelihood formulation.21 The second factor

specifies the distribution of the genotype of parents,

controls, and founder cases from the same population,

but with controls and founder cases randomly sampled,

but with parents selected for having an affected child. Now,

the factor Pr(parents of cases|p, g1, g2) does contain

information on g1 and g2 in addition to information on

p. Essentially, the information that is ‘lost’ by using the

TDT instead of the MLE is ‘regained’ by taking into account

the parents in the second factor of the above partition of

the likelihood.

The implications of this factorization, however, are more

far-reaching. Specifically, and importantly, it implies that

statistical inference, for example estimation or testing, on

g1, g2 can be carried out on these two factors separately, and
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subsequently combined using standard methods for com-

bining independent studies. Thus, we could use the TDT to

analyze the first factor and use case–control methods to

analyze the second factor. If some affected children (cases)

are from a different population than the controls (as in our

example) and founder cases, they can be included in the

first factor, but their parents need to be omitted from the

second. This type of factorization of the likelihood has

recently been used to develop optimal score tests to test for

a genetic effect.22,23

Here, we propose a simple estimator of the genetic

relative risk under the multiplicative model, using a logistic

model approximation to the likelihood (cf below) and to

test whether this estimate is statistically significantly

different from 1. We will assume that the conditions for

the valid use of both the TDT (few) and case–control

methods (notably the absence of stratification, cases and

controls arising from the same population) are fulfilled.

Estimation
We first consider separate (for TDT and parent–control

separately) estimates of the parameters g1, g2.

TDT

From the expressions in Table 1 we can show that the

probability r that a heterozygote parent transmits the risk

allele is:

g1/(1þ g1), for heterozygous (1/2) parents, when the

other parent is 1/1.

(g1þ g2)/(1þ2g1þ g2), for heterozygous parents when the

other parent is also heterozygous (1/2).

(g2)/(g1þ g2), for heterozygous parents when the other

parent is 2/2.

For the marginal probability (ie marginalized over the

other parent) r that a heterozygous parent transmits the

high susceptibility allele, under HWE, we have

r=ð1� rÞ ¼ fpg2 þ ð1� pÞg1g=fpg1 þ ð1� pÞg ð3Þ

Taking the multiplicative model (g1¼ g; g2¼ g2) we have

that for the TDT the relative risk g¼ r/(1�r), where r is the

probability of transmission of a risk allele. Note that in this

case r/(1�r) is independent of p, and does not require HWE,

as it is independent of the co-parent’s genotype. For other

models one should either know p, or consider both parents

simultaneously when evaluating the TDT in order to

estimate g1 and g2. In this (multiplicative) case, however,

parents may be considered separately.

Under the multiplicative model, g can also be estimated

using logistic regression, with the 1/0 outcome denoting

– for informative heterozygous parents – whether the allele

of interest has been transmitted or not. When no

covariables are included, the exponent of the estimated

intercept estimates g. Under the multiplicative model the

logistic model yields the exact relative risk.

Covariables, such as the age of the child, its diet, or the

presence of certain alleles at different loci, could be

included to explore whether the effect of the putative

susceptibility allele on disease risk depends on other

factors; a form of interaction or effect modification.24

If only one of the parents is known for some of the

children, then multiple imputation, as described above,

can be used. When only one parent is available for all

children, the 1-TDT can be used to test for an association

between allele and disease. Unfortunately, while this poses

no problems for testing, the 1-TDT statistics T1 and T2

depend on both g1, and g2, making estimation more

difficult.

Parents–controls–founder cases

We will assume that the (subset of) parents included in this

(sub) analysis are from the same population as the controls

and founder cases. For the multiplicative model, we do not

need to assume that this population is in HWE, as relative

risks do not depend on this assumption. However, we take

a population in HWE as an example (Table 2). Genotypes of

controls follow directly from the HWE assumption. For

Table 2 (a) Genotype probabilities for cases, parents and controls. (b) Relative risks for cases, parents and control under the
multiplicative model

1/1 1/2 2/2

(a)Genotype probabilities
Case (1�p)2/{(1�p)2+g12(1�p)p+g2p

2} g12(1�p)p/{(1�p)2+g12(1�p)p+g2p
2} g2p

2/{(1�p)2+g12(1�p)p+g2p
2}

Parent {(1�p)2}{(1�p)+pg1}/T {(1�p)p}{(1�p)+g1+pg2}//T {p2}{(1�p)g1+pg2}/T
Control (1�p)2 2(1�p)p p2

(b) Relative risks
Case 1 g g2

Parent 1 (1+g)/2 g
Control 1 1 1

T has the same value as in Table 1.
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parents selected for having an affected child, we have to

take appropriate sums over the 10 possible situations in

order to calculate their genotype distribution.

Thus, for the parent–control study, for the multiplicative

model, we have that the odds ratio of the association

between being a parent and being 1/2 heterozygous and 2/

2 homozygous (relative to being a control, and being1/1

homozygous) equals (1þ g)/2 and g, respectively. Writing

g¼1þ d, we have that these are 1þ d/2 and 1þ d respec-

tively, or – when g is not very large (o3, say)

– approximately Og and g. We can thus estimate g by using

logistic regression with a covariable x having values 0, 0.5,

and 1, for 1/1, 1/2 and 2/2 individuals respectively. Parents

have ‘response’ value y¼1 and controls y¼0. We can

estimate g by exp(r), where r is the estimated coefficient of

x. Standard errors and confidence intervals are automati-

cally provided by most standard software (eg SAS). As the

approximation depends on g¼1þ d being not very large,

logistic regression is only an approximation. For founder

cases, the odds ratio of being a case and being 1/2

heterozygous and 2/2 homozygous (relative to being a

control, and being1/1 homozygous) equals g and g2

respectively. In order to incorporate these founder cases

we assign them a ‘response’ value y¼2. As, in this case, y

can assume three different values (0, 1, and 2), standard

logistic regression is inappropriate, and one should use the

adjacent-category logit model, a generalized logistic regres-

sion model.25–27

Note that we implicitly assumed that the genotype

distribution of the two parents of a case are independent

(within the population of parents of cases), that is, that

there is random (not assortative) mating. One should also

be aware of other sources of bias. For example, if 2/2

parents would be less fertile, these parents would be

underrepresented in the parent–control comparison for

reasons unrelated to disease in their children.28

Note that the assumption of a multiplicative model can

be tested using either the parents and controls, or – even

better – cases and controls. Under this model, the relative

risk of 2/2 cases should be the square of 1/2 cases. However,

the power of such goodness-of-fit tests will usually be low.

Combining TDT and parents–controls–founder cases

For the multiplicative model, an overall estimator for g is

obtained by combining the two logistic regressions into a

single one. A simple method for this is Poisson regression.

Records are created as follows. Each record consists of the

same four variables, a number n of cases, an outcome

variable y, a record type z, and a covariable x. The first

group of records pertains to heterozygous informative

parents, and y denotes whether the susceptibility allele has

been transmitted (y¼1) or not (y¼0). The record type z is

set¼0, and the covariable x is set¼1.

The second group of records pertains to parents, founder

cases, and controls, as described above. The variable x¼0,

0.5, or 1, depending on the frequency of occurrence of the

susceptibility allele. The record type variable z is set¼1,

and the outcome variable y assumes the value 0, 1, or 2, for

controls, parents and founder cases, respectively. No

intercept is required.

The required layout of the data set is shown in Table 3.

In SAS, for example, Poisson regression is carried out as

follows. Copies y1 and x1 are made of x and y, and a

variable z1¼1�z created. The following commands will do

the analysis.

PROC GENMOD;

CLASS x1 y1;

MODEL n¼ x1*z y1*z x*y z1/ LINK¼LOG ER-

ROR¼POISSON NOINT;

RUN;

The exponent of the coefficient of x*y will estimate g,
that is, the relative disease risk.

Confidence intervals and P-values can be based on Wald

type tests. As logistic regression yields only an approxima-

tion of the true disease relative risk for the parents–control

comparison, so does the combined (generalized) logistic

regression.

Table 3 Data set-up for generalized logistic regression using Poisson regression

Comments N y x z

TDT, 1/2 parent, 2 allele transmitted to child 1 1 0
TDT, 1/2 parent, 2 allele not transmitted to child 0 1 0
Parent–control– founder cases. 1/1 genotype 2¼ founder case 0 1

1¼parent
0¼ control

Parent–control– founder cases. 1/2 genotype 2¼ founder case 0.5 1
1¼parent
0¼ control

Parent–control– founder cases. 2/2 genotype 2¼ founder case 1 1
1¼parent
0¼ control
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A complication may arise when some of the affected

children are siblings. As they may share other risk factors

(eg environmental) in addition to shared genes at the

susceptibility locus; their observations cannot be treated as

independent. Fortunately, the Generalized Estimating

Equation (GEE) approach to logistic regression can be used

to take such dependencies into account.29 However, if the

number of such siblings is small, ignoring the dependency

among them is unlikely to seriously affect the parameter

estimates.

Example
In a study carried out in two pediatric hospitals in The

Netherlands, cases were 207 children hospitalized for a

serious respiratory syncytial virus (RSV) infection. This

infection is common in infants, but usually takes an

uncomplicated course. It has been hypothesized that

interleukin genes may play a role in the development of

serious disease, requiring hospitalization.30 In the study

reported here, several polymorphic loci (each with two

known different alleles), suspected to play a role in the

immune response to this virus, were studied, but here we

will only consider the gene coding for interleukin-4.

Details of this study have been published elsewhere.20

Briefly, parents of all children were approached for

permission to enroll their children and were requested to

send some scrapings from their oral mucous membrane for

DNA testing. In addition, 447 random population controls

were also genotyped in order to increase the power of the

study by adding a CC component to the study, and to

obtain background information on the population fre-

quency of risk alleles.

Of the 193 mothers and 186 fathers who agreed to

participate (several couples had more than one child

enrolled), there were 114 informative parents of whom

65 transmitted the mutant allele suspected of being

associated with serious disease. With bxy estimated at 0.28

(standard error 0.19), gTDT is estimated at exp(0.283)¼1.33

(one-sided P-value 0.067). This is somewhat suggestive of a

positive association, and lack of statistical significance may

have been due to a lack of statistical power. In the parents–

control comparison the DNA of 447 (adult) controls,

selected for being ‘native Dutch’31 was compared to that

of 379 parents of whom 321 were classified as ‘native

Dutch’, and included in the parents–control comparison.

Of these parents, 223 were homozygous for the nonrisk

allele, 93 were heterozygous and five were homozygous for

the ‘risk’ allele. For the controls, these numbers were 342,

94, 11 respectively. The slope b of logistic regression of

parent (parent¼1, control¼0) on half the number of risk

alleles¼0.495 (standard error 0.29) one-sided P-value

0.045), yielding a g of exp(0.495)¼1.64.

A combined logistic regression yields b¼ 0.345 (standard

error 0.16), giving g¼1.41 (95% CI 1.03–1.93), which is

significantly different (two-sided) from 1.

Note that the addition of controls has added some power

to the TDT, but that the relative sizes of the standard errors

indicates that most (approximately 2/3) of the information

of the joint analysis still came from the TDT part of the

data.

In would seem more efficient, where possible, instead of

including only triplets and controls, also to include

founder cases, that is, a true case–control study.

In order to illustrate this point, we took the above

estimate of g (1.41), and an allele frequency (of allele ‘2’) of

0.16. With these parameter values we simulated studies in

which, in addition to 114 informative parents and 379

parents, either (a) 447 controls or (b) 224 controls and 223

founder cases, were included.

For the 1000 simulations of study type a, we found a

mean estimate of ln(g) of 0.352 (true value ln(1.41)¼0.344)

, with a standard deviation of 0.16. The mean estimated

standard error is 0.154. Clearly, the procedure appears to

perform satisfactorily. Analysis of only the (simulated) TDT

part yields a mean estimate of 0.353, with a standard

deviation of 0.175. The mean standard error then equals

0.191. Thus, adding controls did indeed increase the power

(reduce the standard error), but not by very much. The

combined study has a standard error comparable to a TDT

that is approximately 30–40% larger than the one actually

done.

For the type b simulations we found a mean of 0.356

with a standard deviation of 0.125, and a mean estimated

standard error of 0.128. Again, the procedure appears to

function properly. As expected, the standard error is

smaller when both controls and founder cases are avail-

able, as the combined TDT and CDC (with both controls

and founder cases) has a standard error approximately

equivalent to a TDT study 2.3 times as large.

Discussion
We presented a simple new method to combine the TDT

and case–control methodologies. It complements separate

TDT and case–control analyses. It integrates and presents

the total evidence for the association between an allele and

a disease. The integrated study is more powerful than the

constituent parts. The design that makes the most efficient

use of resources (genetic tests) appears to be one in which,

in addition to the TDT information, both controls and

founder cases are available.

As our approach combines the two methodologies of

TDT and CC, it is also sensitive to the assumptions that

underlie either of them, such as absence of population

admixture, absence of parent-of-origin effects, or the

assumption that the controls are from the same population
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as (the subset) of parents with whom they are compared.

Our method does not guard against bias that may arise

when these assumptions are wrong. Violation of under-

lying assumptions may be suspected when the TDT and

case–control analyses yield quite disparate estimates of the

risk of disease associated with an allele. In such cases,

researchers should emphasize the discrepancy of results

rather than obscure it by lumping all the data together in a

single likelihood.

So far, we have totally ignored parental affection status.

For some diseases, parents of children may also be affected

by the disease of interest, however, and one may wonder

whether this should affect our calculations. We believe that

parental affection status can safely be ignored, as the

differences between parents and controls are based on

selection on the affection status of the children. Similarly,

controls are supposed to be a random population sample,

and their affection status should similarly be ignored. If a

disease is highly prevalent and controls have been selected

for not being affected, the formulae presented should be

adapted to reflect selection of controls. If multiple loci (eg

markers) are of interest then we recommend separate

analyses for all markers. However, an exception should be

made for closely linked markers whose phase can be

identified. In this situation it is probably simplest to list

and identify the haplotypes of all individuals involved,

treat the haplotypes as multiple alleles occurring at a single

‘locus’, and compare each haplotype in turn to all other

ones combined.
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