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Alpha-1-antitrypsin (a1-antitrypsin) is the archetypal member of the serine proteinase inhibitor or serpin
superfamily. The most common severe deficiency variant is the Z allele, which results in the accumulation
of mutant protein within hepatocytes. This ‘protein overload’ causes neonatal hepatitis, cirrhosis and
hepatocellular carcinoma. The lack of circulating plasma a1-antitrypsin results in early-onset panlobular
emphysema. The mechanism underlying the deficiency of Z a1-antitrypsin is due to an aberrant
conformational transition within the protein and the formation of chains of polymers that tangle within
the secretory pathway of hepatocytes. This mechanism also underlies the plasma deficiency of other
members of the serpin superfamily to cause a class of diseases called the serpinopathies. Specifically
mutant alleles of antithrombin, C1-inhibitor and a1-antichymotrypsin have been reported that favour the
spontaneous formation of polymers and the retention of protein within hepatocytes. The consequent lack
of plasma antithrombin, C1-inhibitor and a1-antichymotrypsin results in thrombosis, angio-oedema and
emphysema, respectively. Moreover, the polymerisation of mutants of neuroserpin results in the retention
of polymers within neurones to cause the inclusion body dementia, familial encephalopathy with
neuroserpin inclusion bodies or FENIB. We review here the genetic and molecular basis and clinical
features of a1-antitrypsin deficiency, and show how this provides a platform to understand the other
serpinopathies.
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Alpha-1-antitrypsin
Gene structure and common mutations

Alpha-1-antitrypsin (a1-antitrypsin) is a 394 amino acid,

52 kDa, acute-phase glycoprotein synthesised by the liver

and macrophages and present in the plasma at a concen-

tration of 1.5–3.5 g/l. It functions as an inhibitor of a range

of proteolytic enzymes, but its primary role is to inhibit the

enzyme neutrophil elastase. a1-Antitrypsin is subject to

genetic variation resulting from mutations in the 12.2 kb,

7-exon gene at q31–31.2 on chromosome 14.1 Over 75

allelic variants have been reported and classified using

the protease inhibitor (PI) nomenclature that assesses

a1-antitrypsin mobility in isoelectric focusing analysis.2

Normal a1-antitrypsin migrates in the middle (M) and

variants are designated A–L if they migrate faster than

M, and N–Z if they migrate more slowly. The most

clinically relevant variants are the S (Glu264Val) and

Z (Glu342Lys) alleles and the uncommon Null alleles that

result from point mutations that introduce premature stop

codons.
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Epidemiology

The greatest frequency of the S allele is within the Iberian

Peninsula and gradually reduces in the direction of South

to North and from West to East.3 Heterozygotes for the S

allele of a1-antitrypsin (PI*MS) comprise up to 28% of

Southern Europeans and although they have plasma a1-

antitrypsin levels that are 80% of the M allele, the

deficiency is not associated with any clinical sequeale. In

contrast, the Z allele is most common in northwest Europe

with frequencies declining from West to East and from

North to South.3 Approximately 4% of Northern Europeans

are heterozygous for the Z allele (PI*MZ) with one in

1700 being homozygotes (PI*Z). The Z allele results in

plasma levels that are 10–15% of the M allele. It causes

both neonatal and adult liver disease and adult-onset

emphysema.

Molecular mechanism of a1-antitrypsin deficiency

a1-Antitrypsin functions by presenting its reactive centre

methionine residue on an exposed loop of the molecule

such that it forms an ideal substrate for the enzyme

neutrophil elastase. Following docking, the enzyme is

translocated over 70 Å from the upper to the lower pole

of the protein where it is crushed and inactivated.4 – 6 This

is achieved by the reactive centre loop inserting in b-sheet

A (Figure 1a). The Z mutation (Glu342Lys) distorts the

relationship between the reactive centre loop and b-sheet A

(Figure 1b). The consequent perturbation in structure

allows the reactive centre loop of one a1-molecule to lock

into the A sheet of a second to form a dimer, which then

extends to form chains of loop-sheet polymers.7,8 These

polymers are then degraded9 or accumulate within the

endoplasmic reticulum of hepatocytes to form the PAS-

positive inclusions that are the hallmark of Z a1-antitrypsin

liver disease (Figure 2). The Siiyama (Ser53Phe) and Mmalton

(52 phenylalanine deletion) variants are located in

the shutter domain of the molecule (Figure 1b) and also

favour the rapid formation of polymers. S a1-antitrypsin

(Glu264Val) and the rare I variant (Arg39Cys) similarly

result in polymersation, but at a much slower rate than

the Z, Siiyama or Mmalton alleles. Therefore, these variants do

not accumulate in the liver and cause only mild plasma

deficiency. It should be stressed that the liver disease

associated with Z a1-antitrypsin deficiency is not due to

plasma deficiency but is secondary to protein overload.

Some confirmation is provided by the Null alleles that are

unable to polymerise and do not appear to cause liver

disease.2 They do however predispose to the development

of emphysema.

The emphysema that is associated with PI*Z a1-anti-

trypsin deficiency is intimately linked with the lack of

proteinase inhibitor within the lung that is available to

bind to, and inactivate, neutrophil elastase. The single

most important factor in determining the age of onset

and progression of emphysema in these individuals is

smoking.10 However, there is considerable variability in the

severity of lung disease in smokers with the same PI*Z

genotype.11 More recently, it has been recognised that

other pathways contribute to the emphysema associated

with PI*Z a1-antitrypsin deficiency: (i) The Z a1-antitrypsin

that escapes from the liver and that which is produced

locally in the lung is five-fold less effective at inhibiting

neutrophil elastase than normal M a1-antitrypsin.12 (ii) Z

a1-antitrypsin spontaneously forms polymers within the

Figure 1 (a) Inhibition of neutrophil elastase by
a1-antitrypsin. Following docking (left) the neutrophil
elastase (grey) is inactivated by movement from the upper
to the lower pole of the protein (right). This is associated
with insertion of the reactive loop (red) as an extra strand
into b-sheet A (green). Reproduced from Lomas and Carrell5

with permission. (b) The structure of a1-antitrypsin is centred
on b-sheet A (green) and the mobile reactive centre loop
(red). Polymer formation results from the Z variant of a1-
antitrypsin (Glu342Lys at P17; arrowed) or mutations in the
shutter domain (blue circle) that open b-sheet A to favour
partial loop insertion (step 1) and the formation of an
unstable intermediate (M*). The patent b-sheet A can either
accept the loop of another molecule (step 2) to form a dimer
(D), which then extends into polymers (P). A small
proportion of the unstable serpin molecules can accept
their own loop (step 3) to form an inactive, thermostable,
latent conformation (L). The individual molecules of
a1-antitrypsin within the polymer are coloured red, yellow
and blue. Reproduced from Gooptu et al30 with permission.
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lung.13 This conformational transition inactivates a1-anti-

trypsin as a proteinase inhibitor, thereby further reducing

the already depleted levels of a1-antitrypsin that are

available to protect the alveoli. (iii) Intrapulmonary

polymers are chemotactic for human neutrophils in vitro,14

and this may explain the finding that patients with Z a1-

antitrypsin deficiency have an excess number of neutro-

phils in bronchoalveolar lavage15 and in tissue sections of

lung parenchyma.6 The relative contribution of each of

these pathways to lung damage in any given patient is

unknown.

Clinical syndromes

The liver disease associated with the PI*Z allele of

a1-antitrypsin results from abnormal Z a1-antitrypsin

accumulating within the endoplasmic reticulum of hepa-

tocytes. The accumulation of abnormal protein starts

in utero and is characterised by the accumulation of

diastase-resistant, periodic acid-Schiff-positive inclusions

of a1-antitrypsin in the periportal cells (Figure 2). In all,

73% of PI*Z a1-antitrypsin homozygote infants have a

raised serum alanine aminotransferase in the first year of

life, but in only 15% of cases is it still abnormal by 12 years

of age.16 Similarly, serum bilirubin is raised in 11% of PI*Z

infants in the first 2–4 months but falls to normal by

6 months of age. One in 10 infants develops cholestatic

jaundice and 6% develop clinical evidence of liver disease

without jaundice. These symptoms usually resolve by the

second year of life, but approximately 15% of patients with

cholestatic jaundice progress to juvenile cirrhosis. The

overall risk of death from liver disease in PI*Z children

during childhood is 2–3% with boys being at more risk

than girls. The factors that cause the progression of liver

disease in some children, but not others, are unknown but

may relate to intercurrent infection/inflammation and/or

other genetic factors.

All adults with the PI*Z allele of a1-antitrypsin have

slowly progressive hepatic damage that is often subclinical

and only evident as a minor degree of portal fibrosis.

However, up to 50% of PI*Z a1-antitrypsin homozygotes

present with clinically evident cirrhosis and occasionally

with hepatocellular carcinoma.17 The accumulation of

a1-antitrypsin within hepatocytes in association with

severe plasma deficiency is also seen with two other

rare mutations: the PI*Siiyama variant (Ser53Phe) that is

the most common cause of a1-antitrypsin deficiency in

Japan and PI*Mmalton (52 phenylalanine deletion) that is

the most common cause of a1-antitrypsin deficiency in

Figure 2 Z a1-antitrypsin is retained within hepatocytes as intracellular inclusions. These inclusions are PAS positive and
diastase resistant (a, arrowed) and are associated with neonatal hepatitis and hepatocellular carcinoma (b). Electron
micrograph of an hepatocyte from the liver of a patient with PI*Z a1-antitrypsin deficiency shows the accumulation of a1-
antitrypsin within the rough endoplasmic reticulum. These inclusions are composed of chains of a1-antitrypsin polymers
shown here from the plasma of a PI*Siiyama a1-antitrypsin homozygote (c) and from the liver of a PI*Z a1-antitrypsin
homozygote (f). Similar mutations in a1-antitrypsin deficiency and neuroserpin encephalopathy result in similar intracellular
inclusions of a1-antitrypsin and neuroserpin. They are shown here in hepatocytes and neurons with PAS staining (a and d,
respectively) and as endoplasmic aggregates of the abnormal proteins on electron microscopy (b and e, respectively). Electron
microscopy confirms that the abnormal neuroserpin forms bead-like polymers and entangled polymeric aggregates identical
to those shown here with Z a1-antitrypsin (c and f) (magnification left to right: �200, �20000, �220 000). Figure
reproduced from Carrell and Lomas4 with permission.
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Sardinia. Both of these alleles probably also cause liver

disease, but there is currently insufficient evidence to state

conclusively that this is the case. The risk of liver disease in

individuals who are heterozygous for the Z allele (ie PI*MZ)

is uncertain.

The respiratory disease associated with severe a1-anti-

trypsin deficiency usually presents with increasing dys-

pnoea with cor pulmonale and polycythaemia occurring

late in the course of the disease. Chest radiographs

typically show bilateral basal emphysema with paucity

and pruning of the basal pulmonary vessels. Upper lobe

vascularisation is relatively normal. Ventilation perfusion

radioisotope scans and angiography also show abnormal-

ities with a lower zone distribution. High-resolution CT

scans with 1–2 mm collimation are the most accurate

method of assessing the distribution of panlobular emphy-

sema and for monitoring progress of the pulmonary

disease,18 although this currently has little clinical value.

Lung function tests are typical for emphysema with a

reduced FEV1/FVC ratio, gas trapping (raised ratio of

residual volume to total lung capacity) and low gas transfer

factor. The onset of respiratory disease can be delayed to

the sixth decade in non-smokers with PI*Z a1-antitrypsin

deficiency, and these individuals often have a normal

lifespan.19 Lung disease is characteristically seen in PI*Z a1-

antitrypsin homozygotes, but PI*MZ individuals also have

a slightly greater risk of emphysema if they smoke.

Diagnosis

a1-Antitrypsin deficiency is usually suspected in infants

with neonatal hepatitis, cholestatic jaundice or cirrhosis,

or adults with cirrhosis and/or hepatocellular carcinoma. It

presents in the adult population as emphysema that

characteristically affects the bases of the lungs. a1-Anti-

trypsin deficiency should also be considered in patients

with Wegener’s granulomatosis and panniculitis. a1-Anti-

trypsin alleles are codominantly expressed with each allele

contributing to the plasma level of protein. Thus each

of the deficiency alleles results in a characteristic decrease

in the plasma concentration of a1-antitrypsin; the S

variant forms 60% of the normal M concentration and

the Z variant 10–15%. A combination of alleles also has

predictable effects, the PI*MZ heterozygote has a plasma

level of a1-antitrypsin of 60% (50% from the normal M

allele and 10% from the Z allele), the PI*MS heterozygote

80% and the PI*SZ heterozygote 40%. The measurement of

plasma levels alone does have limitations as the concen-

tration of protein rises during the acute-phase response and

this can mask a partial deficiency of a1-antitrypsin.

However, the plasma level never reaches the normal range

in the PI*Z a1-antitrypsin homozygote. The diagnosis of

abnormal alleles is made by assessing the mobility of a1-

antitrypsin in isoelectric focusing analysis. If this is

ambiguous then the presence of the Z or other alleles can

be confirmed by genotype analysis.

Animal models

Mice have been generated that overexpress the M and

Z alleles of a1-antitrypsin.20 – 22 They have a variable

severity of liver disease. While there are good models for

smoking-related lung damage there is, as yet, no good

mouse model for the pulmonary emphysema associated

with a1-antitrypsin deficiency. Finally, we have recently

reported a Drosophila model of serpin polymerisation.23

The addition of the Z mutation (Glu342Lys) to the serpin

necrotic causes a temperature-dependent loss of function

phenotype in association with the formation of polymers.

The utility of the fly as a model of human disease requires

further investigation.

Treatment

The treatment of a1-antitrypsin deficiency depends

largely on the avoidance of stimuli causing repeated

pulmonary inflammation – primarily smoking. Patients

with a1-antitrypsin deficiency-related emphysema should

receive conventional therapy with trials of bronchodila-

tors, inhaled corticosteroids and, where appropriate,

assessment for long-term oxygen therapy and single

lung transplantation. The role of lung volume reduction

surgery in this group is unclear as the lung disease is

basal rather than apical and resections of this region are

technically more difficult. Thus lung volume reduction

surgery should not be offered routinely in patients

with a1-antitrypsin deficiency until further information is

available.

The lung disease results from a deficiency in the

antielastase screen. This may be rectified biochemi-

cally with intravenous infusions of a1-antitrypsin or

by giving the protein in a nebulised formulation.

Registry data suggest that intravenous replacement

therapy is of benefit in slowing the rate of decline in

lung function,24 but the only randomised-controlled

trial failed to show a statistically significant benefit

as it lacked sufficient power.18 It is estimated that

over 500 individuals with a1-antitrypsin deficiency

are required to have sufficient power to show that

intravenous infusions of a1-antitrypsin slow the rate of

decline in lung function.18 Although a1-antitrypsin

replacement therapy is widely used in North America,

it is currently not available in many European countries,

including the UK.

PI*Z homozygotes should be monitored for the

persistence of hyperbilirubinaemia as this, along with

deteriorating results of coagulation studies, can indicate

worsening liver function and may prompt consideration

of liver transplantation. Parents with a child with severe

Z a1-antitrypsin liver disease may require genetic counsel-

ling. The likelihood of similar severe liver damage in

a subsequent PI*Z homozygote sibling is approximately

20%.25
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Screening
Population screening can be undertaken by isoelectric

focusing. However, the only current therapeutic interven-

tion is to advise the PI*Z a1-antitrypsin homozygote

against smoking. The follow-up of 127 PI*Z a1-antitrypsin

homozygotes from birth demonstrated a 50% reduction

in the prevalence of smoking if an individual knew they

had a1-antitrypsin deficiency. The prevalence of smoking

in the Western world is currently approximately 30%.

Thus, approximately 12 000 individuals would have to be

screened to identify one PI*Z homozygote who would

abstain from smoking, but who would have started to

smoke had (s)he not been screened. This is currently not

cost-effective.

Other serpinopathies
a1-Antitrypsin is the archetypal member of the serine

proteinase inhibitor or serpin superfamily. This family

includes members such as a1-antichymotrypsin, C1 inhi-

bitor, antithrombin and plasminogen activator inhibitor-1,

which play an important role in the control of proteinases

involved in the inflammatory, complement, coagulation

and fibrinolytic cascades, respectively.26 The family is

characterised by more than 30% sequence homology with

a1-antitrypsin and conservation of tertiary structure. Con-

sequently, physiological and pathological processes that

affect one member may be extrapolated to another. The

phenomenon of loop-sheet polymerisation is not restricted

to a1-antitrypsin and has now been reported in mutants of

other members of the serpin superfamily to cause disease

(the serpinopathies). Mutants of C1-inhibitor (Phe52Ser,

Pro54Leu, Ala349Thr, Val366Met, Phe370Ser, Pro391Ser),

antithrombin (Pro54Thr, Asn158Asp) and a1-antichymo-

trypsin (Leu55Pro, Pro228Ala) can also destabilise the

protein architecture to form inactive polymers that are

retained within hepatocytes. The associated plasma defi-

ciency results in angio-oedema, thrombosis and chronic

obstructive pulmonary disease, respectively (see, Carrell

and Lomas4, Lomas and Carrell5 and Lomas and

Mahadeva6, for reviews). The process of polymerisation is

perhaps most strikingly displayed in the inclusion body

dementia, familial encephalopathy with neuroserpin

inclusion bodies (FENIB).27 We have shown that this

dementia is caused in heterozygotes by a mutation in

neuroserpin (Ser49Pro) that is homologous to that causing

liver cirrhosis in a1-antitrypsin deficiency.27 Moreover,

both the liver cirrhosis and the neurodegenerative disease

have an identical pattern of intracellular polymerisation

and inclusion body formation (Figure 2). Further kindreds

with polymerogenic neuroserpin mutations have been

described (Ser52Arg, His338Arg, Gly392Glu), and it is

becoming clear that there is a direct relationship between

the magnitude of intracellular accumulation of neuro-

serpin and the severity of the clinical syndrome.28 This is

supported by recent work demonstrating that one of the

neuroserpin mutants that causes FENIB (Ser49Pro), poly-

merises up to 13-fold faster than wild-type protein.29 These

data provide strong support for the role of aberrant

neuroserpin polymerisation in the pathogenesis of FENIB.

Thus, the polymerisation of a1-antitrypsin has provided a

paradigm for a new class of conditions, the serpinopathies,

that result from a similar molecular mechanism. Strategies

to block polymerisation would provide effective therapy

for a wide range of clinical syndromes.
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