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Family-based association tests for quantitative traits
using pooled DNA
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Interest in whole-genome QTL mapping has spurred efforts to reduce the cost of studies now based
primarily on individual genotyping. Pooled DNA tests are a possible solution, and understanding
how measurement error affects test power could assist in study design. Here we describe pooled
tests explicitly optimised for measurement error, including family-based tests robust to population
stratification. Our results suggest that pooled DNA whole-genome screens may be feasible with
current instruments.
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Introduction
Association tests of outbred populations may have greater

power than linkage analysis to identify the genetic

variants contributing to complex human diseases.1 – 4

While single-nucleotide polymorphisms (SNPs) occur at

sufficient density to provide a suitable marker set,5 – 10

individual genotyping remains costly. One method to

reduce cost is to pool DNA from individuals with

extreme phenotypic values and to measure the allele

frequency difference between pools.11 – 17 The power of

pooled tests has been investigated for case – control

studies.18 More recently, pooled tests have been discussed

for quantitative traits. In the absence of experimental

error, the optimal design for an unrelated population is

to compare frequencies between pools of the most

extreme 27% of individuals ranked by phenotypic value,

retaining 80% of the information of individual genotyp-

ing.19 This result has been obtained more generally in

the context of optimal inefficient statistics.20 Experimen-

tal sources of error, primarily allele frequency

measurement error, degrade the test power.21 Recent

applications22,23 suggest that typical absolute measure-

ment errors are 1 – 4%.

Population stratification poses a second challenge to

pooled tests. Genomic control methods, developed to

reduce stratification effects in genotype-based association

tests,24 – 28 are not directly applicable to pooled tests.

Here we present optimized pooled DNA test designs,

including family-based tests robust to stratification. Esti-

mates of test power explicitly consider allele frequency

measurement error. This distinguishes our treatment from

prior theoretical work, permits the optimization of test

design as a function of known parameters, and provides a

bridge to experimentalists seeking practical guidance for

whether to attempt and how to perform pooled association

tests.

Methods
Sampling variance and concentration variance

Let pi represent the frequency of allele A1 for individual i,

either 0, 1/2, or 1, and ci represent the concentration of

DNA contributed by this individual to a pool of n indivi-

duals. The allele frequency p* for the pool is

p* ¼
X cipiX

cj

¼ pþ
X ðc0 þ dciÞdpiX

c0 þ
X

dcj
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which defines the relative concentration error dc 0i. The

terms dpi and dc 0i are uncorrelated, and each has expecta-

tion zero. Furthermore, the sum of the dc 0i terms is

constrained to be zero. The variance of p* is

Varðp*Þ¼ 1

n2

X
i;j

Covðdpi; dpjÞ þ
1

n2

X
i;j

Covðdc 0i; dpjÞCovðdpi; dpjÞ

¼ 1

n2

X
i;j

rijs2
p þ

t2

n
s2

p

We have used

Covðdpi; dpjÞ ¼
pð1 pÞ

2
rij ¼ s2

prij and

Covðdc 0i; dc 0jÞ ¼ t2 dij
1

n

8>: 9>; � t2dij;

with the concentration coefficient of variation defined as

t:[Var(ci)]
1/2/c0 and the genotypic correlation between a

pair of individuals defined as rij.

For the between-family design, a pool of n individuals

contains n/s sibships of size s and genotypic correlation r,

and

Varðp*Þ ¼ sR

n
s2

p þ
t2

n
s2

p

with R=(1/s)[1+(s71)r]. Since the individuals in the upper

and lower pools are unrelated, Vs+Vc=2Var(p*).

For a within-family design, the allele frequency differ-

ence between pools is

Dp* ¼ 1

n

X
i

ð1þ dc 0iÞdpi
1

n

X
j

ð1þ dc 0jÞdpj;

where i and j label individuals in the upper and lower pools

respectively, and

VarðDp*Þ ¼ 2

n2

X
i;i 0

Covðdpi; dpi 0 Þ 1þ Covðdc 0i; dc 0i0 Þ
� �

2

n2

X
i;j

Covðdpi; dpjÞ

¼ 2ð1 rÞ
n

s2
p þ

2t2

n
s2

p :

Expected allele frequency difference and non-centrality

parameter

The genotype-dependent phenotype distribution is defined

using a variance components model,

Xki ¼ Yk þ Yki þ mki:

Family and individual effects are normally distributed with

mean zero and variance

VarðYkÞ ¼ t rs2
A us2

D

VarðYkiÞ ¼ s2
R t þ rs2

A þ us2
D

The family index is k, the sib index is i, and the individual

phenotypes Xki are the sum of Yk, the family effect exclud-

ing the QTL, Yki, the individual effect excluding the QTL,

and mki, the QTL effect m(Gki) for sib i with genotype Gki.

The total phenotypic correlation between sibs is t. Both r

and u relate to the genetic background shared between sibs,

r being the genotypic correlation (1 for monozygotic twins,

1/2 for full sibs, 1/4 for half sibs) and u being the shared

genotype expectation (1 for monozygotic twins, 1/4 for full

sibs, 0 for half sibs).29

The phenotypic values Xki and QTL effects mki are re-

expressed as family means and individual deviations from

family means,

Xk� ¼
1

s

X
i

Xki

dXki ¼ Xki Xk�

mk� ¼
1

s

X
i

mki

dmki ¼ mki mk�:

The phenotypic variances excluding QTL effects are

VarðXk� mk�Þ ¼
1

s
s2

R þ ðs 1Þðt rs2
A us2

DÞ
� �

� Ts2
R

VarðdXki dmkiÞ ¼ ð1 TÞs2
R

When the QTL effects are small, T&(1/s)[1+(s71)t].

The probability that sibling 1 from family k with geno-

types G=(G1,G2,. . .,Gs) is selected for the upper pool is

17F[(X’7mG)/s], where F(z) is the cumulative normal prob-

ability. The variable X under selection (with selection

threshold X’), the QTL contribution mG, and s2:Var(X7mG)

depend on pooling design. For between-family pools, these

are xk�, mk�, and Ts2
R; for within-family pools, dXk1, dmk1, and

ð1 TÞs2
R. Because the labeling of sibs is arbitrary, the frac-

tion f of individuals selected for the upper pool is equal to

the probability that sib 1 is selected,

f ¼
X

G

PRðGÞf1 F½ðX0 mGÞ=s�g;
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where Pr(G) is the probability of observing the sibship

genotypes G. Numerical inversion provides X’ as a function

of f. When the QTL effect is small (mG5s), the linear

approximation

F½ðX 0 mGÞ=s� � FðX 0=sÞ ðmG=sÞfðX 0=sÞ

is accurate, where f(z)=dF(z)/dz is the normal probability

density. This approximation yields f=17F(X’/s) because

the terms linear in mG cancel in the sum over G.

The expected allele frequency of the upper pool is

Eðp̂pUÞ ¼
1

f

X
G

PrðGÞpG � f1 F½ðX0 mGÞ=s�g;

where pG represents the allele frequency of sib 1. Using the

linear expansion for F[(X’7mG)/s] yields

Eðp̂pUÞ ¼
X
G

PrðGÞpG þ
fðX0=sÞ

f s

X
G

PrðGÞpGmG ¼

pþ fðX0=sÞ
fs

EðpGmGÞ:

An analogous expression for the lower pools gives a

symmetric result, yielding

Eðp̂pU p̂pLÞ ¼
2f½F 1ð1 f Þ�

f s
EðpGmGÞ

where X’/s has been replaced by F71(17f).

The expectation of the correlation between p and m for

an individual is

EðpmÞ ¼ p2½a ðp qÞa 2pqd� þ 2pq � 1
2
� ½d ðp qÞa 2pqd�

¼ pq½a ðp qÞd�
¼ spsA

Similarly, the correlation between sibs i and j is E(pimj)=rijspsA,

where rij is their genotypic correlation. Summing over sibs

yields either RspsA (between-family pools) or (17R)spsA

(within-family pools) for E(pGmG), with R=(1/s)[1+(s71)r]

as before.

Selecting discordant-like sib-pairs is equivalent to selec-

tion based on jdXkij, and the within-family analytical

results are directly applicable. For larger families, discor-

dant-like families are pre-selected in decreasing rank order

of the within-family phenotypic variance
P

s dXks
2 summed

over siblings s.

We have ascertained that the analytical results for the

NCP are virtually indistinguishable from exact numerical

results when the QTL effect is 5% or less of the trait

variance. For larger effects, roughly when the effect size

sA
2 approaches the minor allele frequency, the genotype-

dependent phenotype distributions become resolved, trans-

forming a complex trait into Mendelian trait amenable to

traditional linkage analysis.

Analytical fit for the optimal pooling fraction

Optimizing the pooling fraction is equivalent to maximiz-

ing the objective function I=2y2/(f+f2k2), where y is

shorthand for f[F71(17f)]. Writing f as 1-F(z) and optimiz-

ing using dI=dz=0 yields

y � ð1þ 2f k2Þ 2zf � ð1þ f k2Þ ¼ 0:

We have used y=f(z), dy/dz=7yz, and df/dz=7y.

When k2 is large, z is also large, and f may be replaced by

its asymptotic expansion for large z, f=y × (z717z73). With

this substitution, the optimum satisfies

z3

2yk2
¼ 1:

Taking the natural logarithm of both sides and equating

exponents,

z2

2
þ 3 ln z lnðk2

ffiffiffiffiffiffiffiffi
2=p

p
Þ � LðzÞ ¼ 0:

When k and z are both large, the term 3 ln z is asymptoti-

cally small, giving

z �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð2k4=pÞ

q
� BðkÞ:

An improved fit is obtained by perturbation theory by writing

z ¼ BðkÞ½1þ bðkÞ�;

where lim
k!1 bðkÞ. Substituting this expression for z into L(z)

and simplifying,

B2bþ 3 ln½Bð1þ bÞ� ¼ 0;

which gives the asymptotic form b=(3/B2) ln B, or

z � B ð3=BÞ ln B:

For clarity, the functional dependence of B and b on k has

been suppressed.

Since the asymptotic behavior for large k is not affected

by introducing terms of lower order in k, the fit can be

improved for small k without degrading the fit at large k
by writing

z ¼ A ð3=AÞ ln Aþ a1; where

AðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ ln 1þ a3k2 þ 2

p
k4

8>: 9>;:r
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The constants a1, a2, and a3 are then selected to fit the

exact numerical results at particular values of k. Fitting

the results z=0.612 at k=0 and z=0.8047 at k=1 provides

the particular parameters

a1 ¼ 0:067; a2 ¼ 2; a3 ¼ 3:

Results
Consider a population of N/s families, each a sibship of size

s (N total individuals). The genotypic correlation within a

sibship is denoted r, r=1/4, 1/2, and 1 for half-sibs, full-sibs,

and monozygotic twins, respectively. Sibships may also

represent inbred lines, r being the the genetic correlation

within each line. Sibs in different families are assumed to

have uncorrelated genotypes.

To conduct a pooled DNA test for association of a parti-

cular allele A1 with a quantitative trait, individuals are

selected for an upper pool, comprising higher phenotypic

values, and a lower pool, comprising lower phenotypic

value, similar to designs for optimizing breeding value

and for QTL mapping.30 – 33 We restrict attention to

balanced designs: each pool has fN individuals, with

f40.5 defined as the pooling fraction. Balanced designs

are favored when high and low phenotypes are treated

symmetrically.21

We consider four designs: (i) unrelated individuals (s=1),

in which the fN individuals having highest and lowest

phenotypic values are selected for the upper and lower

pools respectively; (ii) between-family, in which all s sibs

from the fN/s families having highest and lowest mean

phenotypic values are selected for the upper and lower

pools; (iii) within-family, in which the s’ sibs having high-

est and lowest phenotypic values within each family are

selected for the upper and lower pools, with f=s’/s; (iv)

within-family with pre-selection of discordant families, in

which a fraction f ’ of families with greatest within-family

phenotypic variance are selected, Var ¼
P

2ðXs
�XXÞ2 where

Xs is the phenotype of sib s and �XX is the family mean,

then the extreme high and low sib within each selected

family are selected for the upper and lower pool, with

f=f ’/N.

A suitable statistic for a two-sided test for each design is

Z2 ¼ ðp̂pU p̂pLÞ2

Varðp̂pU p̂pLÞ
;

where the estimated frequencies of allele A1 in the upper

and lower pools are denoted p̂pU and p̂pL. The denominator

is Varðp̂pU p̂pLÞ ¼ VS þ VC þ VM . The sampling variance Vs

represents the unavoidable error in estimating the allele

frequency frequency from a finite sample. The concentra-

tion variance VC arises from sample-to-sample DNA

concentration variance within a pool. The measurement

variance is VM=2e2, where e is the experimental allele

frequency measurement error for each pool. We assume

that the three sources of variation are independent, justified

when DNA samples are treated uniformly. Other sources of

error, for example errors arising from unequal amplification

of alleles, may also be included in this statistical frame-

work.34

Under the null hypothesis, Z2 has a w2 distribution with

one degree of freedom. Under the alternate hypothesis, the

tested marker is assumed to be a bi-allelic quantitative trait

locus (QTL) with alleles A1 and A2 occurring at frequencies

p and (17p):q. For between-family tests, the alleles are

also assumed to be in Hardy – Weinberg equilibrium in a

random-mating population. The variance of the allele

frequency per individual is s2
p ¼ pq=2, and the estimated

allele frequency is p̂p ¼ ðp̂pU þ p̂pLÞ=2. The estimated variance

of the allele frequency per individual, denoted ŝs2
p , equals

p̂pð1 p̂pÞ=2.

The mean phenotypic effects for genotypes G=A1A1,

A1A2, and A2A2 are mG=a,d and 7a, respectively. The domi-

nance ratio d/a describes the inheritance mode with values

71, 0, and 1 for pure recessive, additive, or dominant

inheritance. The proportion of trait variance accounted

for by the QTL is denoted s2
Q ,

s2
Q ¼ 2pq½a dðp qÞ�2 þ ½2pqd�2 ¼ s2

A þ s2
D:

The mean QTL effect is m=(p7q)a+2pqd. Phenotypic values

are assumed to be normally distributed for each genotype

with mean mG=mG7m and residual variance s2
R ¼ 1 s2

Q

arising from other genetic and environmental factors. The

distribution of phenotypic values in the population is a

mixture of three normal distributions with overall mean 0

and variance 1. The total phenotypic correlation between

sibs from genetic factors (including the QTL) and environ-

mental factors is denoted t.

The non-centrality parameter (NCP),

NCP ¼ ½Eðp̂pU ¼ p̂pLÞ�2=Varðp̂pU p̂pLÞ;

measures the information provided by a pooled DNA test.

The notation EðÔOÞ is the expectation of an observable ÔO.

Below we evaluate the NCP numerator, providing accurate

analytical results when possible and simulation results

otherwise. We calculate the NCP denominator analytically

for the null hypothesis. For the alternative hypothesis,

the expected allele frequencies for each pool are displaced

symmetrically from p to p+dp (see Methods), and the

value of the denominator decreases by a small value

proportional to (dp/p)2. We make a conservative approxi-

mation by ignoring this change and using the null

hypothesis denominator throughout. The NCP then equals

(za/27z17b)
2, where a and b are the type I and II error rates

for the two-sided test and zg:F71(17g) with F the cumu-

lative normal probability. Maximising the NCP optimises

the test.
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The denominator of the NCP (see Methods) is

VSþVCþVM¼
2Jŝs2

p

Nf
þ

2t2ŝs2
p

Nf
þ2e2¼

2ŝs2
p

Nf
� ðJþt2Þ � 1þ Nf e2

ðJ þ t2Þŝs2
p

" #

¼
2ŝs2

p

Nf
� ðJ þ t2Þ � ð1þ f k2Þ

where t is the coefficient of variation for DNA concentra-

tion; R ¼ 1
s � ½1þ ðs ¼ 1Þr� relates family-based genotypic

variance components to pairwise correlations; and J is 1

for pools of unrelated individuals, sR for the between-family

design, and (1 – r) for both within-family designs. Typically

t is less than 10% and t2 may be ignored relative to J. The

term k, denoted the scaled measurement error, is defined

k � e=½ðJ þ t2Þŝs2
P=N�

1=2

and is independent of QTL effect.

The numerator of the NCP is (see Methods)

½Eðp̂pU p̂pLÞ�2 ¼
4s2

As
2
pff½F 1ð1 f Þ�g2

s2
Rf 2

� F

where f(z) is the normal density and F is 1 for pools of

unrelated individuals, R2/T for between-family pools, and

(1 – R)2/(1 – T) for within-family pools without pre-selection.

For the within-family design using discordant-like pre-selec-

tion, F=(1 – r)2/2(1 – t) for sib-pairs (expressions for larger

sibships are unwieldy). The term R is defined above, and

T ¼ 1
s � ½1þ ðs 1Þt� relates family-based phenotypic variance

components to pairwise correlations.

The resulting analytical result for the NCP, valid for small

QTL effect, is

NCP ¼ Ns2
A

s2
R

� F

J þ t2
� 2ff½F

1ð1 f Þ�g2

f þ f 2k2
:

The first of the three factors is identical to the NCP for an

association test performed by individual genotyping on a

population of N unrelated individuals; the second factor,

with t=0, is the correction for individual genotyping a

population of N/s families each having s sibs and then

performing either a between-family test, with F/J=R/sT, or

a within-family test, with F/J=(s71)R/s(17T). The third

factor represents the fraction of information retained when

the association test is performed by pooling instead of indi-

vidual genotyping, and maximising this factor with respect

to f provides the optimal pooling fraction. With no

measurement error, k=0, tests are optimised with f=0.27

and 80% of the information is retained.19 As e increases,

the maximum information that can be retained is deter-

mined entirely by the single collective term k.

Expressions for F, J, and k2 are summarised in Table 1,

and we now provide examples of each family-based design.

Results for between-family designs are depicted in Figure 1

for populations of sib-quads, sib-pairs, and unrelated indivi-

duals, each population having 1000 total individuals. The

optimal pooling fraction, indicated by an arrow, shifts to

lower values as the number of sibs per family decreases.

The optimal fraction and the information retained also

shift to lower values as the minor allele frequency

decreases, with results shown for frequencies 0.1 and 0.01.

The raw measurement error is 0.01, and the pooling frac-

Figure 1 The information retained by the between-family
pooled test design, expressed as a fraction of the information
from a between-family test based on individual genotyping, is
depicted for sibships of size 4, 2, and 1, each population having
1000 total individuals. The optimal pooling fraction, indicated
by an arrow, shifts to lower values as the number of sibs per
family decreases. The optimal fraction and corresponding
information retained also shift to lower values as the minor allele
frequency decreases, with results shown for frequencies 0.1 and
0.01. The raw measurement error is 0.01.

Table 1 The non-centrality parameter for family-based
pooled DNA designsa

Design F J
Unrelated individuals 1 1
Between-family R2/T sR
Within-family (17R)2/(17T) 17r
Within-family, discordant pre-selectionb (17r)2/2(17t) 17r
aThe non-centrality parameter (NCP) is Eðp̂pU p̂pLÞ½ �2=Varðp̂pU p̂pLÞ.
The numerator is F � 4s2

As
2
p f F 1ð1 f Þ

� �� 	2
=s2

Rf 2
� �

, where F is
provided in this table, f is the pooling fraction s2

A and s2
R are the

additive and residual variance for a QTL with allele frequency p, s2
p

is p(17p)/2, f(z) is the normal probability density and F(z) is the
cumulative normal probability. The denominator of the NCP is
2ðJ þ t2Þs2

p=Nf
h i

þ 2e2, where J is provided in this table, t is the
coefficient of variation for DNA sample concentrations in the pool,
N is the total number of individuals before selection, and e is the
raw measurement error. The combined expression for the NCP is
ðNs2

A=s
2
RÞ � ½F=ðJ þ t2Þ� � f2ðf½F 1ð1 f Þ�Þ2=ðf þ f 2k2Þg, where k2 is

Ne2=½ðJ þ t2Þs2
p � and k is termed the scaled error. Each sibship has s

sibs with genotypic correlation r and phenotypic correlation t; R
and T are (1/s)[1+(s71)r] and (1/s)[1+(s71)t], respectively.
bAnalytical results are for sib-pairs only. For larger families see
numerical results (Figure 3).
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tion and information retained would decrease for larger e
(see Figure 4 for examples of changing e).

For within-family designs, the optimal pooling fraction

(top panel) and information retained (bottom panel) are

shown in Figure 2 as a function of k for sibship sizes of

2 – 5, 6, 8, 16 and 32. For sibships through 5, it is always

optimal to select just the highest and lowest sib. For

larger families and small measurement error, the top

and bottom quarters of the sibs are pooled and 80% of

the information is retained. The pooling fraction and

information retained decrease as the scaled measurement

error increases.

Within-family tests can be improved by pre-selection

of discordant-like families. In Figure 3, the optimal frac-

tion of families to select (top panel) and information

retained (bottom panel) are displayed for sibship sizes 2

through 6 as a function of the scaled measurement error

k (results from computer simulation). The pooling frac-

tion and information retained decrease as k increases.

Pre-selection has the greatest benefit for sib-pairs: for

the smallest values of k, only 56% of families are

selected, retaining 80% of the information; had all

families been used, only 60% of the information would

have been retained. Pre-selection is less beneficial for

trios and larger sibships.

In Figure 4, the optimal pooling fraction (top panel)

and information retained (bottom panel) using between-

family pools and within-family pools with discordant-like

pre-selection are displayed for a population of 500 sib-

pairs (1000 individuals) as a function of the raw

measurement error e. Results are shown marker frequen-

cies 0.5 and 0.01. With no measurement error, the

optimal pooling fraction of 0.27 retains 80% of the infor-

mation in each case. As measurement error increases, the

optimal pooling fraction and information retained both

decrease.

The information loss increases for rarer alleles and is

worse for the within-family test than for the between-

Figure 2 The optimal number of sibs to select from each family
(top panel) and the information retained relative to individual
genotyping (bottom panel) are shown for sibship sizes 2 – 5, 6,
8, 16 and 32 as a function of the scaled measurement error k.
For sibships through 5, it is always optimal to select just the
highest and lowest sib.

Figure 3 The optimal fraction of families to select (top panel)
and information retained (lower panel) are displayed for
sibships of size 2 through 6 as a function of the scaled
measurement error k.
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family test. This behaviour can be deduced from the

scaled error k2, which is inversely proportional to the

allele frequency sampling variance. Since the sampling

variance is 36 smaller within-family vs. between-family,

k2 is 36 larger, 4Ne2/p(17p) vs. 4Ne2/3p(17p), and more

information is lost. The inverse dependence of k2 on

minor allele frequency explains the decrease in power

for rare alleles.

Because the allele frequency difference between sibs

is uncorrelated from their allele frequency mean, the

between-family and within-family tests are indepen-

dent estimators of sA even when individuals

contribute their DNA under both designs. The NCP

of a combined test is the sum of the NCPs for each

test and it too follows a w2 distribution with 1 degree

of freedom. In practice, estimates for sA may be

obtained by inverting the expressions for Eðp̂pU p̂pLÞ
provided in Table 1, then weighting each estimator

by the inverse of its variance.

Population stratification may be indicated by a difference

between the estimates for sA from a between-family and

within-family test. In the absence of stratification, the

difference follows a normal distribution with variance

Var½ŝsAþ ŝsA � ¼Vþ � ½f 2
þTs2

R=4y2
þR2ŝs2

p � þ V �

½f 2ð1 TÞs2
R=4y2 ð1 RÞ2ŝs2

p �

where the ‘+’ and ‘7’ subscripts refers to the between-

family and within-family designs respectively,

y� ¼ f½F 1ð1 f�Þ�, and V represents the total variance,

VS+VC+VM, for each design. When stratification is indicated,

the between-family estimate of A may be unreliable but the

within-family estimate remains robust.

A universal calibration curve for pooled test design is

provided in Figure 5, with the optimal pooling fraction

(top panel) and information retained (bottom panel)

displayed as a function of k. An accurate analytical fit to

the numerically exact results is (see Methods)

Figure 4 The optimal pooling fraction (top panel) and
information retained (bottom panel) for between-family and
within-family tests of a population of 500 sib-pairs are shown as
a function of raw measurement error for marker frequencies
0.5 and 0.01. The within-family tests include pre-selection of-
discordant-like families.

Figure 5 The optimal pooling fraction (top panel) and the
information retained (bottom panel) from exact numerical
calculations (solid line) and an analytical fit (dashed line) are
displayed as a function of the normalised measurement error k.
The fit coincides with the exact results for the information
retained.
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f ¼ 1 F½A ð3=AÞ ln A 0:067�; with

AðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ln 1þ 3k2 þ 2

p
k4

8>: 9>;r
:

The local maxima of the pooling fraction fitting error ffit7
fexact occur at k=0.5 (fitting error=+0.006) and at k=3.5

(fitting error=70.01). The fitting error for the information

retained vanishes on the scale of the figure. The experimen-

tal measurement error e corresponding to the scaled error k
depends on the population structure and marker frequency.

For example, for a population of 500 cases, 500 matched

unrelated controls, and 10% marker frequency, e=0.0067k
is the raw error corresponding to k.

Discussion
Based on the pooled designs described above, we outline

a QTL mapping study using 100 000 markers. For 80%

power to detect a QTL with 1% additive variance and

no more than 100 false-positives from pooled tests (the

false-positives may be resolved using individual genotyp-

ing), an NCP of 17 is required. We assume pooling of

discordant sib-pairs to protect against stratification effects.

At the scaled error k=1 where the pooled tests are still

close to maximum power, the pooling fraction would be

21%, 65% of the information of a population would be

retained, and a population of 2600 individuals would be

required. The raw measurement error corresponding to

k=1 for this population size is 0.005 for an allele with

50% frequency and 0.002 for an allele with 5% frequency,

56 to 106 more precise than achieved by current-day

instrumentation.

To account for lower precision, we set k=10, which from

Figure 5 is seen to retain 7.7% of the information and corre-

sponds to a pooling fraction of 1.6%. In this case, the total

population size would be 22 000; the precision required for

a pooled test would be 0.017 for an allele with 50%

frequency and 0.007 for an allele with 5% frequency. This

is currently feasible if repeated measures are used to

decrease the effective measurement error.

Pooled tests perform worse for within-family tests and

rare alleles, and may therefore be difficult to apply to

disease-risk variants under negative selection pressure. The

loss of power may be less severe for pharmacogenetic

studies of variants affecting drug response, where selection

pressure is absent, and for test crosses of model organisms

or agricultural species whose marker frequencies are under

experimental control.

The analysis provided here for quantitative traits may be

extended to threshold characters yielding dichotomous

classifications of a population. For case – control classifica-

tion, the disease prevalence corresponds to the pooling

fraction f. When the quantitative character is available for

measurement, it is approximately 46 more efficient to

compare unrelated individuals with extremely high vs

extremely low characters than to compare the derived cases

vs controls.19

In summary, we have derived the optimal pooling frac-

tions for within-family and between-family tests of

association. With ideal instrumentation, 80% of the infor-

mation is retained and the optimal pooling fraction is

27%. As allele frequency measurement error increases, the

optimal pooling fraction and the information retained both

decreases. The information loss is more severe for low-

frequency alleles and for within-family tests. The optimal

pooling fraction depends on a single parameter represent-

ing the measurement error, and a universal calibration

curve provides optimised designs as a function of this para-

meter.
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