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Incorporation of covariates in multipoint model-free
linkage analysis of binary traits: how important are
unaffecteds?
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When the mode of inheritance is unknown, genetic linkage analysis of binary trait is commonly performed
using affected-sib-pair approaches. When there is evidence that some covariates influence the phenotype,
incorporation of this information is expected to increase the power of the analysis since it allows (1) a better
specification of the phenotype and (2) to take into account unaffected subjects. Here, we show how to
account for covariates in the sibship-oriented Maximum-Likelihood-Binomial (MLB) linkage method by
means of Pearson's logistic regression residuals which are computed using phenotypic and covariate
information on both affected and unaffected subjects. These residuals are subsequently analysed as a
quantitative phenotype with the corresponding extension of the MLB approach which can be used without
any assumption on the distribution of these residuals. Then, a large simulation study is performed to study
the relative power of incorporating or not unaffected sibs. To this aim, two different strategies in the
multipoint analysis of family data are compared: (1) using residuals of the whole sibships (ie both covariate
and genotypic information on unaffecteds is needed), and (2) using affecteds only (no information on
unaffecteds is needed), under different generating models according to genetic and covariate effects. The
results show that there is a clear increment in the power to detect the susceptibility locus when making use of
the information carried by unaffecteds, in particular for dominant mode of inheritance and when values of
the covariates influencing the disease are shared by all the members of the family. European Journal of Human
Genetics (2001) 9, 613 ± 620.
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Introduction
Model-free linkage studies are increasingly used to investi-

gate the genetic factors implicated in complex traits since

they do not require any specification of the underlying

genetic model. In the context of binary phenotypes, affected

sib-pair methods (ASP), which are based on the estimation of

the proportion of alleles shared identical by descent (IBD) at a

marker locus, are among the most popular. When there is

evidence that some covariates influence the phenotype,

extensions to ASP have been developed that permit the

inclusion of such factors in the analysis, but displayed some

limitations.

Stratification-based approaches1 can only handle categ-

orical covariate, and some loss of power to detect linkage, due

to multiple testing and smaller sample size, is the price to pay

for stratifying the data as shown by Leal and Ott.2 The use of

residuals (eg from a logistic regression or a survival analysis

model) is an interesting approach to account for a set of

covariates.3 ± 5 However, as the distribution of these residuals

is usually unknown, they need to be analysed by linkage

methods for quantitative traits that are not too sensitive to

distribution assumptions which is generally not the case of

the widely used regressive6 and variance component

approaches.7 ± 9 Explicit covariate models have been devel-
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oped in the context of the Maximum-Likelihood-Score (MLS)

statistic10,11 and have the advantage to estimate simulta-

neously gene and covariate effects. However, this joint

estimation may decrease the power to detect linkage by

increasing the number of degrees of freedom of the tests, and

these models have to deal with boundary constrained allele

sharing estimates (eg by making assumptions such as the

absence of dominance variance). In addition to these specific

problems, when family samples collected for sib-pair linkage

studies include sibships with more than two affecteds, these

methods usually decompose these sibships into their

constitutive sib-pairs, a procedure which can result in serious

alterations of significance levels.12 ± 15 This latter point could

explain, at least in part, the reason why few works have been

performed to evaluate the impact of including unaffecteds

into ASP studies that account for covariates, because once

unaffected subjects are incorporated, families with more than

two sibs become far from negligible.

The recently developed sibship-oriented Maximum-Like-

lihood-Binomial (MLB) approach14,16 is a model-free linkage

analysis method which considers the sibship as a whole (ie

does not need to decompose it into its constitutive sib-pairs).

The MLB approach relies on the idea of binomial distribu-

tions of parental alleles among affected offspring,17 and

provides a simple likelihood-ratio-test involving a single

parameter. In the first part of this study, we show how to

account for covariates in the MLB method by means of

Pearson's logistic regression residuals. These residuals are

subsequently analysed as a quantitative phenotype with the

corresponding extension of the MLB approach16 which can

be used without any assumption on the distribution of

residuals as shown in previous works.16,18 Then, a large

simulation study is conducted under different generating

models according to genetic and covariate effects to compare

the power of the classical linkage analysis using affected sibs

only to the alternative strategy analysing the residuals of the

whole sibship (including both affected and unaffected sibs).

Methods
Accounting for covariates by means of Pearson's residuals

We were interested in a binary trait (affected/not affected). To

assess the effects of covariates on such trait, the logistic

regression is one of the most appropriate statistical model.

Therefore, to account for covariate information in the

linkage analysis of the binary trait, we computed the

Pearson's logistic regression residuals (defined as the

difference between the observation and the fit divided by

the square root of the estimated variance for the observa-

tion), which are components of the Pearson w2 statistic,19

using phenotypic and covariate information on both affected

and unaffected subjects as already proposed by several

authors.20,21 Furthermore, we accounted for intrafamilial

phenotypic correlations by means of estimating equations

techniques22 which allowed us to perform logistic regression

on correlated data. All computations were performed using

the GENMOD procedure of the SAS software (SAS institute,

Cary, NC, USA).

Genetic linkage analysis using the Maximum Likelihood

Binomial method

The MLB method is a recently developed genetic model-free

sibship-oriented method which overcomes the common

problem of multiple sibs by considering the sibship as a

whole.

In the case of binary traits,14 the MLB (denoted as MLB-bin)

is based on the idea of binomial distribution of the number of

affected sibs receiving a given parental allele. Under the null

hypothesis of no linkage, H0, each affected sib has a

probability 0.5 of having received allele A from an AB parent.

A simple linkage test can then be constructed by assessing the

departure from 0.5 of the probability that affected sibs have

received the same parental allele. Denoting as a the

probability for an affected sib to have received the marker

allele transmitted with the disease allele, the test for linkage

(a40.5) is a standard likelihood-ratio statistic asymptotically

distributed as a 50% : 50% mixture of w2 distributions with 0

and 1 degree of freedom; that is, lMLB
1/2, denoted as ZMLB, is a

one-sided standard normal deviate.

In the case of quantitative traits,16 the idea is to introduce

an individual latent binary variable which captures the

linkage information between the observed quantitative trait

and the marker. In a sibship with n children, let Z be the

vector of the observed quantitative phenotypes (ie the

logistic residuals in the present study), M the vector of the

children marker alleles, and Y the vector of the latent binary

variables for the sibship (yi={0;1}). The likelihood of the

marker observations given the observed phenotypes of the

children, P(M|Z) is written as

P �MjZ� �
X
Y

P �MjY; Z�P �Y jZ� �
X
Y

P �MjY �P �Y jZ�; �1�

since by definition, M is independent of Z given Y. The first

part of the likelihood, ie P(M|Y), is similar to the likelihood in

the case of binary traits except that a is now the probability

that sibs with yi=1 have received allele A from an AB parent,

and 1-a the corresponding probability among sibs with yi=0.

The second part of the likelihood, P(Y|Z) can be decomposed

as a product over the n children of P(yi|zi), since given zi, the

yi of a sib is independent of the yj=i's of the sibship. To define

P(yi|zi), the consistency of the method needs to specify a

monotonic link function between yi and zi. In a first version

of the MLB method denoted as MLB-norm, we specified

P(yi=1|zi) as F(zi), and P(yi=0|zi) as 1-F(zi), where F(x) is the

standard cumulative normal distribution function. Alterna-

tively, we can employ a method based on the empirical trait

distribution and here we also adopt this approach, basing it

on the deciles.16 This distribution-free approach will be

denoted as MLB-cat. As in the binary case, we construct a

linkage test by testing (a40.5) vs (a=0.5). The resulting
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statistic has the same distribution as previously, that is a

50% : 50% mixture of w2 distributions with 0 and 1 degree of

freedom, whatever the distribution of the trait under study as

shown by large simulation studies.16,18 The MLB method for

single or multipoint linkage analysis23 of binary and

quantitative traits has been implemented in a program

linked to GENEHUNTER,24 and is available upon request.

Simulation study

Simulations were conducted to investigate the relative power

of incorporating or not unaffecteds in the genetic linkage

analysis of multipoint data. We will first describe the data

generation process and then detail the algorithm used for our

analyses.

Data generation The familial phenotypic data were

generated using the mixed model developed by Morton

and MacLean.25 In this model, the binary trait is

determined by an underlying quantitative susceptibility

variable, V, with mean 0 and variance 1, and individuals

with V value above a given threshold are affected. In our

simulated data, V value results from the independent and

additive contributions from a diallelic (D/d) major gene

effect (G), a polygenic transmissible effect (PG), a binary

covariate effect which can be genotype-dependent (BG), a

quantitative covariate effect (Q), and a random non-

transmitted environmental effect (E) so that

V=G+PG+BG+Q+E and s2
V=s2

G+s2
PG+s2

BG+s2
Q+

s2
E=1. The major gene is characterised by the population

frequency of allele D predisposing to high V values (q), and

the three genotype-specific means dDD, mDd, and mdd (the

overall mean is set to 0). Two dominance effects were

considered for D: dominant (mDD=mDd), and recessive

(mDd=mdd). In each case, four values of q were considered

(detailed in Table 1). The effect of this major locus was

defined as the proportion of total V variability attributable

to the single locus under consideration, and was fixed at

10% (ie s2
G=0.10). The polygenic effect is assumed to be

normally distributed with mean 0 and variance s2
PG. This

polygenic variance, accounting for the residual sib-sib

correlation, generally was fixed at 0.4 (corresponding to a

residual sib-sib correlation of 0.222 for s2
G=0.10), but, to

assess the influence of s2
PG on the power of the different

strategies of analysis, we also considered s2
PG values of 0,

0.2, and 0.6 (corresponding to a residual sib-sib correlation

of 0, 0.111, and 0.333, respectively, for s2
G=0.10). Two

covariates were also included in our model: one quantita-

tive with mean 0 and s2
Q=0.2 and one binary explaining

10% of total V variability. The proportion of individuals

with a value of 1 for the binary covariate was fixed at 0.50

(0.50 with value 0). In a first approach, we considered that

each individual had his own value for the covariates, while

in a second we assumed that the values of the binary and

the quantitative covariates were shared by all the members

of a given family. Moreover, we also considered the case of

an interaction between the binary covariate and the

genotype at the major locus. This interaction was defined

so that the binary covariate effect was only present in

individuals with genotype DD under the recessive model

and Dd or DD under the dominant model, corresponding

to a proportion of total variability attributable to the

interaction comprised between 0.001 and 0.02. Finally, the

random environmental effect is assumed to be normally

distributed with mean 0 and variance s2
E. For all the

models considered, the threshold was computed so that the

prevalence of the disease was 5%.

A summary of genetic and covariate models considered in

the simulation study is presented in Table 1 and some of the

corresponding penetrance models are shown in Table 2. This

latter also presents the major gene effect in terms of ls, ie the

risk ratio for siblings of an affected individual to develop the

disease when compared with population prevalence, as

proposed by Risch.26 As shown in Table 2, a large spectrum

of genetic models is generated that is comprised between two

Table 1 Genetic and covariate models considered in the simulation study

Frequency Proportion of V variability due to
of allele D

Mode of (predisposing Polygenic Binary covariate Quantitative covariate Gene6covariate
inheritance to high value) Major gene component (clustered yes/no) (clustered yes/no) interaction

Recessive
R1 0.1 ± 0.4 0.1 0.4 0.1 (no) 0.2 (no) 0
R2 0.1 ± 0.4 0.1 0.4 7 (no) 0.2 (no) 0.001 ± 0.016
R3 0.1 ± 0.4 0.1 0.4 0.1 (no) 0.2 (yes) 0
R4 0.1 ± 0.4 0.1 0.4 0.1 (yes) 0.2 (no) 0
R5 0.2 0.1 0 ± 0.6 0.1 (no) 0.2 (no) 0

Dominant
D1 0.01 ± 0.1 0.1 0.4 0.1 (no) 0.2 (no) 0
D2 0.01 ± 0.1 0.1 0.4 7 (no) 0.2 (no) 0.002 ± 0.019
D3 0.01 ± 0.1 0.1 0.4 0.1 (no) 0.2 (yes) 0
D4 0.01 ± 0.1 0.1 0.4 0.1 (yes) 0.2 (no) 0
D5 0.02 0.1 0 ± 0.6 0.1 (no) 0.2 (no) 0
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different `extreme' models. One corresponds to genes with

low frequency of allele D and strong effect (in terms of

penetrances); as an example we can mention the first

recessive model with allele frequency 0.1 (ie 1% of

susceptible individuals in the population) and penetrances

varying from 0.019 to 0.973 according to the number of D

alleles and the level of the binary covariate. The other

corresponds to genes with higher allele D frequencies but

weaker effect, eg dominant model with allele frequency 0.1

(ie 19% of susceptible individuals in the population), and

penetrances varying from 0.012 to 0.233.

Genotype data were generated for a genetic map of 20 cM,

with five markers spaced every 5 cM. Each of the loci had five

equally frequent alleles. The major gene locus was located in

the middle of the map, at y=0, with marker 3. To compare the

observed statistics to a known asymptotic distribution, we

considered the values obtained for only one position, which

was in the middle of the map and corresponded to the actual

location of the major gene locus. We assumed that the

parental marker genotypes are entirely known, correspond-

ing to the simple situation of an analysis independent of

marker allele frequencies.

Generation of families For the first part of the simula-

tion study, Monte Carlo methods were used to generate

nuclear families with at least two affected sibs and a total

number of sibs varying from two to four (therefore the

number of unaffecteds varied from zero to two). The

proportions of families with two, three, and four sibs

followed the distribution of sibship sizes provided in

Speer et al,27 and were 0.394, 0.301, and 0.305,

respectively. Genotypes and affected status were assigned

randomly under the different genetic models defined

above. For the second part of the simulation study, we

analysed four types of families with a number of affected

sibs fixed at two and a number of unaffecteds fixed at

either 0, 1, 2, or 3 (therefore the total number of sibs

varied from two to five). The families were obtained using

the following algorithm:

(1) generation of nuclear families under the chosen genetic

and covariate models with sibship size varying from 2 to

10 according to the distribution provided in;27

(2) when a family contains at least two affected sibs and at

least the required number of unaffected sibs (ie 0, 1, 2, or

3) it is selected;

(3) we retain for the analysis the two first affecteds and the

appropriate number of unaffecteds (ie 0, 1, 2, or 3).

Finally, for each simulation setting 500 replicates of

samples including 100 families were analysed.

Results
Figures 1 ± 3 present the results of the simulations for the

different generating models. In each case, 500 simulated data

sets comprising 100 families were created.

Figure 1 (top) displays the results for simulation models R1

and D1. In the recessive case, accounting for unaffecteds was

the most powerful strategy (with a relative gain in power

between 10 and 20%) except for high allelic frequencies

(above 0.3) where the two strategies provided comparable

results. Similarly, in the dominant case, incorporating

unaffecteds in the analysis led to an increment in power

(around 25%) only for allelic frequencies below 0.05. Also, as

expected, in both dominant and recessive cases, the power

decreased as the allelic frequency increased. The same pattern

of results was observed when an interaction between the

binary covariate and the major gene was considered (Figure 1

(bottom), models D2 and R2), where the most powerful

strategy consisted again in incorporating unaffecteds. How-

ever, if the power increment was substantial for low allelic

frequencies, it became negligible for allelic frequencies above

0.3 and 0.05 for recessive and dominant models, respectively.

Finally, it is noteworthy that both MLB-norm and MLB-cat

provided very similar results.

Simulation results for models R3, R4, D3, and D4 (ie the

covariates were clustered) are shown in Figure 2. Accounting

for unaffecteds was the best strategy, in terms of power,

Table 2 Penetrances and ls according to genotype at major gene and level of the binary covariate (results given for a
quantitative covariate value of 0)

Frequency Penetrances according to binary covariate and genotype
of allele D

Mode of (predisposing Binary covariate=0 Binary covariate=1
inheritance to high value) ls dd Dd DD dd Dd DD

Recessive 0.1 1.96 0.019 0.019 0.899 0.079 0.079 0.973
0.2 1.88 0.015 0.015 0.321 0.067 0.067 0.579
0.3 1.53 0.014 0.014 0.151 0.063 0.063 0.356
0.4 1.37 0.013 0.013 0.093 0.059 0.059 0.255

Dominant 0.01 2.83 0.017 0.602 0.602 0.073 0.826 0.826
0.02 2.31 0.015 0.322 0.322 0.067 0.584 0.584
0.05 1.68 0.013 0.141 0.141 0.063 0.343 0.343
0.1 1.40 0.012 0.082 0.082 0.057 0.233 0.233
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whatever the generating genetic models, with a very

substantial power increment (eg when the quantitative

covariate was clustered, the relative gain in power varied

from 40 to 100% and from 40 to 80% in the recessive and the

dominant case, respectively). As in the previous case, the

choice of the link function did not influence the results, ie

MLB-norm and MLB-cat performed similarly.

The impact of varying the polygenic component (models

R5 and D5) is shown in Figure 3a. Overall, the previous trends

were observed whatever the polygenic level; the only

difference was noticed in the recessive case where, for low

value of the polygenic component (420%), disregarding the

unaffecteds increased the power of the analysis. Furthermore,

as expected (since you are increasing the background noise)

the power decreased as the polygenic component increased.

Finally, Figure 3b shows the impact, in terms of power, of

including in the analysis one, two, or three unaffecteds in

addition to the two affected sibs. Models R5 and D5 with s2
PG

fixed at 0.4 were used to generate the data. For both

dominant and recessive models, the penetrance for geneti-

cally predisposed subjects (mostly Dd heterozygotes for

dominant and DD homozygotes for recessive) was comprised

between 0.3 and 0.6, and therefore the proportion of

unaffected genetically predisposed subjects was far from

negligible. The Yaxis presents the ratio of the power obtained

when using none (2A), one (2A+1NA), two (2A+2NA), or

three (2A+3NA) additional unaffected sibs compared with the

power obtained using the two affected sibs only (of course

this ratio equals one for 2A). Note that to achieve similar

baseline powers, thereby allowing a direct comparison of the

impact of including unaffecteds under the two models, only

50 families per sample were generated in the recessive case. In

the dominant case, the power when using one, two, or three

unaffecteds in addition to the two affecteds is increased by a

factor 1.3, 2.3, and 2.9, respectively. In the recessive case, the

inclusion of at least two unaffecteds is needed to observe a

gain in power which anyhow is less dramatic than in the

dominant case. It is likely that within families where the

susceptibility allele D is segregating, the negative impact on

linkage of unaffected homozygous DD subjects in the

recessive model is greater than that of unaffected hetero-

zygous Dd subjects in the dominant case.

Discussion
A method to account for covariates in multipoint model-free

linkage analysis of binary traits has been presented and the

impact, in terms of power, of including unaffected sibs in the

Figure 1 Power in per cent of multipoint linkage analysis using residuals of the whole sibship by means of MLB-norm (broken line) or
MLB-cat (dotted line), and using affected sibs only (MLB-bin, solid line). The power curves are drawn for a 0.001 type I error according to
modes of gene action: recessive (left), dominant (right) in the absence (top, models R1 and D1) or the presence (bottom, models R2 and
D2) of an interaction between the gene and the binary covariate.
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analysis has been evaluated through a large simulation study.

In the context of sibpair-oriented model-free linkage analysis

of binary traits, it has been advocated that the use of pairs

where neither or only one sib is affected was of limited

usefulness.28 While this is probably true when looking at

traits fully determined by a single gene, it is likely that

accounting for genetic and/or environmental information

carried by unaffecteds should be more interesting in the

situation of a complex trait influenced by both genetic and

environmental factors. We have shown here that there was a

clear increment in the power to detect the susceptibility locus

when making use of the information carried by unaffecteds,

in particular when values of the covariates influencing the

disease are shared by all the members of the family and when

there is a high residual sib-sib correlation (a common feature

in complex traits). Also, as shown in Figure 1b, it is

noteworthy that while we did not include a gene-environ-

ment interaction term in the model used to compute the

logistic residuals, accounting for covariates increased the

power to detect the gene even in the presence of such

interaction.

Of course, the power is not the only suitable outcome to

consider when setting up a genetic linkage analysis. In

particular, the overall cost of the study is of major importance

and planning is always a trade-off between maximising the

power and minimising the cost. However, as already observed

with the inclusion of sibs with non extreme phenotypes in

the linkage analysis of quantitative traits,29 we do not think

that including unaffecteds will disproportionately inflate the

cost of a study. In our simulations the additional genotyping

effort was reasonable with a mean number of 540 vs 430

genotypes for each sample of 100 families when accounting

or not for unaffected sibs, respectively. If the genotyping

price continues to decrease, this should be trivial in terms of

cost increment. Furthermore, another benefit of including

genotyped unaffecteds in the study is that they should be

helpful in the case of missing data as it provides additional

marker information to reconstruct parental haplotype.

The notion of using logistic residuals to account for

covariate is by no means new.20,21 However, to our knowl-

edge, this interesting and simple approach has rarely been

used in the context of model-free linkage analysis. This could

be due, at least in part, to the fact that these residuals do not

have a normal distribution. Actually, once covariate has been

accounted for, a statistical method for linkage analysis of

quantitative trait that does not make any assumption on the

distribution of this latter has to be used. This is the case of the

MLB-cat and the MLB-norm method16 but not, as an

Figure 2 Power in per cent of multipoint linkage analysis using residuals of the whole sibship by means of MLB-norm (broken line) or
MLB-cat (dotted line), and using affected sibs only (MLB-bin, solid line). The power curves are drawn for a 0.001 type I error according to
modes of gene action: recessive (left), dominant (right) in the presence of a quantitative (top, models R3 and D3) or a binary (bottom,
models R4 and D4) clustered covariate.
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example, of the widely used variance component approaches

which assume multivariate normality.9 The reason why the

MLB approach is not sensitive to the distribution of the

quantitative phenotype under study (in particular non-

normal phenotypic distributions) is that it relies on

cumulative distribution functions. Therefore, the influence

of extreme phenotypic values is very low while such values

have a dramatic impact on approaches using density

functions. As an example, if we consider a standardised

normal phenotype, the probability that yi equals 1 for an

individual i when the phenotypic value increases from 1.645

to 3.71 is modified by a factor 1.05, while the same values

lead to a modification by a factor around 580 in the density

functions. This property also explains why the use of a

distribution-free link function (ie MLB-cat) provides very

similar results than MLB-norm. Another advantage of the

residual models is that they can easily be performed in the

context of disease with variable age-of-onset3 ± 5 where it is

possible to analyse different types of residuals such as the

martingale residuals proposed by Barlow and Prentice.30 This

technique was recently shown to be very powerful in the

analysis of wheezing age-of-onset in German asthmatic

children31 where it led to the identification of a new region

of interest. Certainly, one can argue that explicit covariate

models present the advantage of allowing joint estimates of

both covariate effects and IBD sharing which can be of

interest in some situations and we fully agree with that.

However, following this idea, it is possible to extend the MLB

approach to do such joint estimation by introducing

covariates in equation (1), and further work is ongoing to

evaluate the interest of using a logistic link function to

specify P(Y|Z, X) where X is the vector of the children

covariates.

Finally, we are aware of several limitations of this study. In

the real life, the diagnosis `unaffected' is often less reliable

than the diagnosis `affected' and it has been shown that such

misclassification (ie inclusion of false negatives) could have a

significant effect in reducing the power compared with the

situation of no diagnostic error or even the presence of false

positives.32 Also, it is clear that our simulations are not

Figure 3 (a) Power in per cent of multipoint linkage analysis using residuals of the whole sibship by means of MLB-norm (broken line) or
MLB-cat (dotted line), and using affected sibs only (MLB-bin, solid line) according to the level of the polygenic component and for
different modes of gene action: recessive R1 with q=0.2 (left), dominant D1 with q=0.02 (right). (b) Ratios of the power obtained for a
type I error of 0.001 when using none (2A), one (2A+1NA), two (2A+2NA), or three (2A+3NA) additional unaffected sibs compared with
the power obtained using the two affected sibs only, for s2

PG=0.4 and different modes of gene action : recessive R5 (left), dominant D5
(right).
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exhaustive and that there is probably an infinite number of

locally most powerful strategies of analysis according to the

simulation settings. However, the goal of this work was less to

propose an unlikely uniformly most powerful strategy of

analysis than to attract investigator's attention on the fact

that unaffecteds could carry some important information

that may be worth considering if we want to elucidate the

mechanisms implicated in the complex diseases.
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