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Gaucher disease: expression and characterization of
mild and severe acid â-glucosidase mutations in
Portuguese type 1 patients
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Type 1 Gaucher disease (GD), the most prevalent lysosomal storage disease, results from the deficient
activity of acid â-glucosidase. Molecular analysis of 12 unrelated Portuguese patients with type 1 GD
identified three novel acid â-glucosidase mutations (F109V, W184R and R395P), as well as three previously
reported, but uncharacterized, lesions (R359Q, G377S and N396T). The type 1 probands were either
heteroallelic for the well-characterized common lesion, N370S, and the F109V, W184R, R359Q or N396T
lesions or homoallelic for the G377S or N396T mutations. Expression of the W184R, R359Q, and R395P
mutations revealed very low specific activities based on cross-reacting immunologic material (CRIM SAs of
0.0004, 0.016 and 0.045, respectively), consistent with their being found only in type 1 patients who had a
neuroprotective N370S allele. In contrast, the F109V, G377S and N396T alleles had significant acid
â-glucosidase activity (CRIM specific activities of 0.15, 0.17, 0.14, respectively), in agreement with their
being mild type 1 alleles. Thus, these studies identified additional acid â-glucosidase mutations in the
Portuguese population and demonstrated that the G377S and N396T mutations were neuroprotective,
consistent with the mild clinical phenotypes of the type 1 patients who were homoallelic for the G377S
and N396T lesions. European Journal of Human Genetics (2000) 8, 95–102.
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Introduction
Gaucher disease (GD) is an inherited storage disorder result-
ing from the deficiency of acid â-glucosidase (E.C.3.2.1.45)
and the lysosomal accumulation of its undegraded substrate,
glucosylceramide, particularly in the cells of the reticu-
loendothelial system.1,2 The majority (about 95%) of GD
cases have non-neuronopathic or type 1 disease and present
with systemic features including pancytopenia, hepatosple-
nomegaly and skeletal involvement.3 Patients with neuro-
logic GD present with either an acute (type 2) or subacute
(type 3) course.

The isolation and sequencing of the full-length cDNA and
the entire genomic sequence,4–6 provided the opportunity to
identify common disease-causing mutations, determine their
frequencies, and identify genotype/phenotype correlations.
To date, over 120 mutations have been identified in the acid
â-glucosidase gene;7,8 (online compilation [http://www.uwc-
m.ac.uk/uwcm/mg/hgmd0.html]9), including base substitu-
tions causing missense, nonsense and splicing mutations,
small and large insertions and deletions, and complex
rearrangements with the pseudogene located 16 kb down-
stream.6 Of these mutations, only a few have been proven to
be common: the N370S lesion in the Ashkenazi Jewish and
the Portuguese populations and the panethnic L444P
mutation.10–13

Prediction of disease type and severity by characterizing a
patient’s genotype has been difficult since most of the
mutations identified are rare or private. In fact, most non-
consanguineous GD patients, with the notable exception of
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Ashkenazi, Norbottnian, and Portuguese patients, are hetero-
allelic for a rare or private allele. However, genotype/
phenotype correlations have been possible for the most
frequently identified mutations, N370S and L444P.7,14–18 The
presence of at least one N370S allele precludes development
of neurological manifestations, even if the heteroallele is
completely inactive;19,20 and homoallelism for the L444P
mutation is generally predictive of neurological disease.21–24

Nonetheless, significant phenotypic variability occurs within
the subtypes,25,26 and in particular within type 1 GD, as
illustrated by patients homoallelic for the N370S allele,
whose condition, although primarily mild, can range from
clinically asymptomatic to severely involved with massive
hepatosplenomegaly and debilitating bone disease. Of note,
type 1 GD patients homoallelic or heteroallelic for the N370S
allele are unusually prevalent among Ashkenazi Jewish and
non-Jewish Portuguese patients, the carrier frequencies being
about 1 in 17.5 and 1 in 118 in these populations,
respectively.10,13

The identification and expression of acid â-glucosidase
mutations is useful for understanding the normal function of
this lysosomal hydrolase and for further delineation of
genotype/phenotype correlations in GD, especially in non-
Jewish populations.12,15 Screening for four mutations (N370S,
L444P, G377S and N396T) in the Portuguese population,
where type 1 GD is the most prevalent lysosomal storage
disease (being some 25 times more frequent than the neu-

ronopathic forms), detected 85% of mutant or about 15%
unknown alleles.27 In this communication, three new muta-
tions (F109V, W184R, R395P) and three previously reported
but uncharacterized lesions (R359Q,28 G377S,29 N396T12)
were detected in 12 Portuguese patients with type 1 GD.
Heterologous expression and characterization studies con-
firmed causality of the mutations for GD, identified three
mild alleles (F109V, G377S and N396T) and led to greater
insight into the roles of individual residues in maintaining
acid â-glucosidase function.

Materials and methods
Patient descriptions
The clinical and laboratory features of the 12 Portuguese
type 1 patients studied are summarized in Table 1. The use of
human materials was approved by the Institute of Medical
Genetics Jacinto de Magalhães.

Reagents
Triton X-100 and NBD-glucocerebroside (NBD-Glc) were
obtained from Sigma Chemical Co. (St Louis, MO, USA).
4-methylumbellifery 1-â-D-glucopyranoside (4MU-â-Glc)
was from Genzyme Corp. (Cambridge, MA, USA) and Sigma-
Aldrich Quimica (Madrid, Spain). Sodium taurocholate and

Table 1 Clinical and laboratory features of the Portuguese type 1 Gaucher disease patients

Proband/ Age at
Gender/ diagnosis/ Disease Leukocyte
Region of Recent severity activitya Hepato- Bone Platelet Hgb
origin evaluation for age (U/mg) splenomegalyb symptomsb (No/mm3) (g/dl) Gentoype Comments

1/M 28/33 mild–mod 1.5×10–5 splenectomy – n.a.c n.a. F109V/N370S affected sibs
Azores asymptomatic at 31 and 38 years
2/F 35/38 mild 1.6×10–5 + – 115 000 8.8 N396T/N396T
Azores
3/M 32/36 moderate 2.0×10–5 splenectomy ++ 44 500 n.a. W184R/N370S
Northern
4/F 24/28 mild–mod 3.5×10–5 + ++ n.a. 8.1 R359Q/N370S
Northern
5/F 20/50 mod–sev 4.7×10–5 splenectomy ++ n.a. n.a. R359Q/N370S
Northern
6/M 39/44 mild–mod 2.3×10–5 splenectomy + n.a. n.a. G377S/G377S parents are 1st cousins
Central
7/M 9/44 severe 5.2×10–5 splenectomy ++ n.a. n.a. G377S/G377S parents are 1st cousins
Central
8/M 48/50 mild–mod 2.8×10–5 + ++ 49 000 n.a. G377S/G377S parents are 1st cousins; affected
Central father, asymptomatic at 63 years
9/F 19/26 mild–mod 2.0×10–5 – ++ 50 000 n.a. N370S/N396T
Central
10/M 13/25 moderate 3.7×10–6 splenectomy ++ 51 000 11 N396T/N396T affected sib, asymptomatic
Central at 35 years
11/M 72/72 mild 3.8×10–6 + + 65 000 10.3 N396T/N396T parents are 1st cousins
Central
12/F 5/25 severe 3.2×10–5 ++ +++ 40 000 8.6 N370S/R395P affected sib, asymptomatic
Southern at 21 years

anormal range of enzymatic activity, 1.1–2.8×104 U/mg towards 4mMU glucopyranoside.       b+: mild; ++: moderate; +++: severe; –: minimal to
none.    cn.a.: not available.
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deoxynojirimycin were purchased from CalBiochem–Nova-
biochem (La Jolla, CA, USA). The Sculptor™ In Vitro Mutage-
nesis System kit was from Amersham (Arlington, IL, USA, and
Amersham, England). Spodoptera frugiperda cells, Baculogold®
linearized DNA, and the baculovirus transfer vector,
pVL1392, were purchased from PharMingen (San Diego, CA,
USA). Restriction enzymes and Taq DNA polymerase were
from Boehringer Mannheim (Mannheim GMBH,
Germany).

DNA isolation, PCR amplification and mutation
detection
Genomic DNA was isolated from skin fibroblasts or periph-
eral blood using standard techniques.30 Initial screening for
two common (N370S, L444P) and several rare but non-
family-specific (84GG, IVS2+1, R463C, R496H, D409H,
R120Q, P122S, K157Q, Y212H, F216Y, W312C, G325R,
C342G, D409V, P415R, RecTL, and RecNci) mutations21,31–44

as well as two mutations found in the Portuguese population,
G377S29 and N396T,12 was performed by polymerase chain
reaction (PCR) amplification and restriction digestion or
allele specific oligonucleotide hybridization.31,45,46

To detect the unknown acid â-glucosidase mutations, the
complete coding region and adjacent intron/exon bounda-
ries were amplified directly from genomic DNA (or through
nested PCR) and subjected to non-radioactive SSCP analy-
sis.12 The primers used for the exons in which the novel
mutations were found follow: Exon 4, 5'-gggtactgatacccttatt-
3' and 5'-gggcagagtgagattctgcc-3'; Exon 6 and 8 (nested PCR),
1st PCR: 5'-ctcggactaccatatcttgatca-3' and 5'-gatgggactgtcga-
caaagt-3', 2nd PCR (Exon 6) 5'-gtgttccaactctgggtgct-3' and
5'-taaatgggaggccagtcct-3', 2nd PCR (Exon 8) 5'-gat-
cagttgctcttcctttg-3' and 5'-tttgcaggaagggagactg-3'; Exon 9
(nested PCR), 1st PCR: 5'-aaccatgattccctatcttc-3' and 5'-acg-
tactctcatctttttgg-3', 2nd PCR: 5'-ccagtgttgagcctttgtct-3' and
5'-gtatggtccggatagtagag-3'.

The relevant PCR products with abnormal electrophoretic
mobility were further examined by direct sequencing (Seque-
nase Version 2.0, USB, Cleveland, Ohio, USA) of the asym-
metric PCR generated products. Each mutation identified was
confirmed by direct sequencing or restriction analysis of
genomic DNA from the proband and affected family mem-
bers. Genomic DNAs from 50 randomly selected unrelated
normal individuals were screened for the F109V, W184R, and
R359P mutations by restriction digestion or SSCP analysis, as
described above. The designations for the mutations refer to
the position of the amino acid substitution, where amino
acid one is the N-terminus of the mature protein. The cDNA
base numbers refer to the position of the nucleotide in the
cDNA,4,47 where nucleotide one is the A in the first ATG. The
genomic designations are based on the updated acid â-gluco-
sidase sequence6,48 available from GenBank [http:/
/www.ncbi.mlm.nih.gov/Entrez/nucleotide.html], accession
number J03059 (8/95). The first nucleotide of exon 1 is at
genomic position 1230.

Construction of expression plasmids
Point mutations for F109V, W184R, R359Q, G377S, R395P,
and N396T were introduced into the acid â-glucosidase cDNA
by an M13mp19-based oligonucleotide-directed site-specific
mutagenesis procedure (Sculptor™ In Vitro Mutagenesis
System) employing the phosphorothioate selection
method49,50 as previously described.51,52 The complete
sequence of each mutagenized cDNA was determined to
confirm that no spurious mutations were incorporated
during the mutagenesis procedure. The mutant cDNAs were
then cloned into the EcoRI site of the baculovirus expression
vector, pVL1392. The final acid â-glucosidase cDNA inserts in
the expression plasmid were 1562 bp fragments beginning
12 bp upstream of the second ATG, ending at the stop codon,
and containing the correct amino acid (arginine) at
position 495.

Construction and purification of recombinant
baculovirus
Recombinant baculovirus containing each of the different
acid â-glucosidase cDNAs (normal in the sense [Nl] and
antisense [Rev] directions, F109V, W184R, R359Q, G377S,
R395P, and N396T) were produced in cloned Spodoptera
frugiperda (Sf9) cells by calcium phosphate-mediated transfec-
tion and homologous recombination between the expression
plasmid and baculovirus genomic DNA (Baculogold®) as
described.53 Pure recombinant baculovirus clones containing
the normal or mutant cDNA for acid â-glucosidase were
isolated by plaque hybridization, amplified, titered, and used
at a multiplicity of infection greater than 10 to infect Sf9
cells.53 The previously characterized common mutations,
N370S and L444P,51,52,54,55 were re-expressed for comparative
purposes.

Immunoblotting
Immunoelectroblotting using a polyclonal anti-human acid
â-glucosidase antibody was conducted as described.56 In
brief, Sf9 cells infected with pure recombinant virus were
harvested 3 days post-infection. The pellets were sonicated in
0.04 M citrate/phosphate buffer, pH 5.5, containing 1 mM

EDTA, 4 mM â-mercaptoethanol, 0.1% Triton X-100, and
0.1% sodium taurocholate, using a probe sonicator (Heat
Systems-Ultrasonics, Inc, Framingdale, NY, USA). Aliquots of
the clarified (875 X g; 20 min) crude sonicates containing
determined amounts of protein and enzymatic activity were
run on tricine-SDS-polyacrylamide gels57 and immunoblot-
ted. Specific activities based on the amount of cross-reacting
immunological material, CRIM specific activity (CRIM SA),
were determined as described.51,52,54 The relative amounts of
CRIM per unit of glucosylceramide-cleaving activity for each
mutant allele was determined by computer analysis of the
immunoblotting membrane using the NIH Image™ program,
version 1.60, and referenced to that of the normal enzyme.
To illustrate: computer assisted comparison of the mature
about 63 kDa band of the normal and F109V enzyme proteins
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(Figure 1, lanes 10, and 1, respectively) demonstrated the
immunoblot signal for the F109V mutant (1.0 3 10–4 U) was
about 0.7 times that for the expressed normal enzyme
(9.6 3 10–4 U). The CRIM SA for the F109V mutant enzyme is
calculated as the relative units of enzymatic activity divided
by the relative CRIM (ie 0.1/0.7 = 0.15). F109V had a CRIM
SA that was 15% of that for normal acid â-glucosidase,
representing a 6.7-fold reduction in catalytic efficiency or
turnover rate.

Enzyme assays
Aliquots of the crude sonicates, prepared as described above,
were assayed for acid â-glucosidase activity using the fluores-
cently-labeled natural substrate NBD-GC (12-[N-methyl-
N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)]dodecanoyl-sphingo-
syl-1-O-â-D-glucopyranoside or NBD-glucosylceramide), or
the synthetic substrate, 4-methylumbelliferyl-
â-D-glucopyranoside (4MU-Glc). The final reaction mixtures
for the natural substrate contained 0.3 mM NBD-GC (reaction
volume of 100 or 200 µL) in 0.04 M citrate/phosphate buffer,
pH 5.5, 1 mM EDTA, 4 mM â-mercaptoethanol, 0.25% Triton
X-100, and 0.25% sodium taurocholate. The W184R mutant
also was assayed in the presence of 2.5 mM conduritol B
epoxide (CBE). The NBD-GC assays were terminated and
processed as described.58 The fluorescence of the extracted
reaction products were read using a Farrand Optical System 3
spectrofluorometer (Optical Technology Devices, Elmsford,
NY, USA). Background levels were determined by comparison
with results obtained from Sf9 cells infected with recombi-
nant baculovirus containing the cDNA for acid â-glucosidase
in the antisense direction (Rev). The contribution to turnover
of the synthetic 4MU-Glc substrate in the crude lysates due to
the expressed human acid â-glucosidase enzymes was calcu-
lated by determining the CBE inhibitable activity.59 Aliquots
of the crude sonicates assayed were first incubated at pH 5.2
for 0.5 h at room temperature in the presence and absence of
1 mM CBE before being assayed for 2 h at 37°C. The final assay
mixtures (reaction volume of 60 µL) contained 0.1/0.2 M

citrate/phosphate buffer, pH 5.2, 1 mM EDTA, 4 mM â-mercap-
toethanol, 0.25% Triton X-100, and 0.25% sodium taur-

ocholate. The 4MU-Glc reaction was terminated by raising
the pH with the addition of 1 M glycine. The difference
between the activity with and without CBE was determined
for each expressed allele. One unit (U) of acid â-glucosidase
activity was that amount of enzyme that hydrolyzed one
micromole of susbtrate per min at 37°C.

Inhibition of expressed normal and mutant acid
â-glucosidases by active site directed inhibitors
Aliquots of crude lysates were assayed in the absence or
presence of CBE and deoxynojirimycin (DNM). Concen-
trated aqueous stock solutions of CBE and DNM were made
such that aliquots of 0–50 µL gave the desired final concentra-
tions in the 200 µL reaction mixture. The assay conditions
employing the synthetic 4MU-Glc substrate were as described
above. The IC50 (the concentration of inhibitor resulting in
50% reduction in activity) values for CBE for the normal and
mutant acid â-glucosidases were determined from a plot of
activity remaining versus inhibitor concentration (0–600 µM)
after subtracting the 4MU-Glc activity remaining at 3 mM CBE
(which represents the non-CBE inhibitable endogenous
Sf9-derived activity). Inhibition by DNM was assessed by
determining the percentage of inhibition resulting from a
single high concentration of DNM (600 µM).

Results
Identification of acid â-glucosidase mutations
Complete SSCP analysis of the acid â-glucosidase coding
region and intron/exon boundaries from non-Jewish Portu-
guese patients with type 1 GD (Table 1) resulted in the
identification of three new (F109V, W184R and R395P) and
three rare, but uncharacterized, missense mutations
(R359Q,28 G377S,29 and N396T12). Table 2 summarizes the
nucleotide substitutions and the corresponding changes at
the protein level for each mutation. The only other allele
identified in these patients was the common N370S muta-
tion. None of these mutations were derived from the tightly
linked pseudogene.6 The W184R mutation was previously
reported only as part of a complex allele36 found in an
Ashkenazi/Sephardic Jewish type 1 GD patient containing
seven missense mutations (Complex C: R120W + W184R +
N188K + V191G + S196P + G202R + F213I), of which all
but the W184R mutation occurred in the pseudogene
sequence.

As indicated in Table 2, five of the six mutations altered a
restriction site, facilitating the screening of family members
to confirm the lesions. Additionally, to rule out any of the
three newly identified mutations being benign polymor-
phisms, genomic DNA from 50 randomly selected normal
Portuguese individuals was screened for the F109V, W184R
and R395P mutations by restriction digestion and/or SSCP
analysis. None of the 100 alleles screened had any of these
new base substitutions.

Figure 1 Immunoblot of the normal and mutant acid
â-glucosidases expressed in Sf9 cells. Lane 1, F109V
(1.0 3 10–4 U, 15 µg); lane 2, W184R (1.0 3 10–6 U, 15 µg);
lane 3, R359Q (1.9 3 10–5 U, 15 µg); lane 4, N370S
(3.5 3 10–4 U, 15 µg); lane 5, G377S (1.1 3 10–4 U, 15 µg);
lane 6, R395P (7.5 3 10–5 U, 15 µg); lane 7, N396T
(1.9 3 10–4 U, 15 µg); lane 8, L444P (2.0 3 10–5 U, 15 µg);
lane 9, the antisense construct (10 µg); and lane 10, Normal
(9.6 3 10–4 U, 10 µg). See text for details.
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Expression and characterization of the missense
mutations
The F109V, W184R, R359Q, G377S, R359P and N396T
missense mutations were expressed in the baculovirus system
and characterized (Table 3). For comparison, the previously
studied N370S and L444P alleles were re-expressed.51,52,54

Using the fluorescently-labeled natural substrate, NBD-GC,
the expressed normal acid â-glucosidase allele had approx-
imately 9.6 3 10–2 µmol/min/mg (U/mg) of glucosylcera-
mide-cleaving activity in the cell lysates. No activity towards
NBD-GC was detected in Sf9 cells infected with the recombi-
nant virus containing the antisense acid â-glucosidase con-
struct. All the expressed mutants had significantly reduced
activities, but were relatively stable (ie there was no change in
the specific activity of each mutant over a 2 h assay period).
Of the six new mutants being characterized, the N396T allele
had the highest residual activity (14% of normal). The F109V,
G377S and R395P alleles expressed significant activity with 7,
8 and 5% of expressed normal activity, respectively. The
R359Q crude lysates had slightly less (1.4% of normal), but
easily detectable, residual activity. In contrast, the W184R
allele had very low, but detectable activity levels
(2.4 3 10–5 U/mg), which was inhibitable by CBE, an active
site-directed substrate analogue specific for lysosomal acid
â-glucosidase.

Immunoblotting studies were carried out to characterize
the expressed normal and mutant acid â-glucosidase and to
determine if the mutations altered stability and/or catalytic
efficiency. As shown in Figure 1, lane 10, the normal human
acid â-glucosidase cDNA produced a multi-band pattern that

strongly reacted with polyclonal anti-human acid â-glucosi-
dase antibodies. Consistent with earlier studies,52 treatment
with N-Glycanase™ demonstrated that the multiple bands
with molecular weights ranging from 63 kDa to about 56 kDa
represented differentially glycosylated forms of the enzyme
(data not shown). Similar multi-band patterns were seen for
all of the expressed mutant cDNAs. No CRIM was detected in
the cells expressing the antisense acid â-glucosidase construct
(Figure 1, lane 9).

To assess the level of catalytic efficiency (kcat) for the
mutant alleles, the specific activities were normalized for the
relative amount of enzyme protein, ie cross-reacting immu-
nologic material (CRIM). The CRIM SA was calculated (see
Methods section) for each, relative to the expressed normal
acid â-glucosidase (Table 3). Of note, the G377S, N396T and
F109V mutant proteins (with CRIM SAs of 0.17, 0.14, and
0.15, respectively) had turnover rates similar to that (0.18) of
the mild N370S allele. The R395P mutant protein, with its
22-fold reduced CRIM SA, had a catalytic efficiency (0.045)
equivalent to that (0.057) of the L444P mutant enzyme. The
R359Q allele was even more severely compromised, having
only 1.6% of normal CRIM SA. Of the expressed alleles, the
W184R mutant protein was essentially inactive having a
2500-fold reduction in turnover rate, and was not charac-
terized further.

To evaluate active site function and to probe the effect of
the various amino acid substitutions on the structural
integrity of the active site of each expressed mutant enzyme,
the affinities of two active site-directed inhibitors, CBE and
DNM, were assessed. Due to its severely reduced activity, the

Table 2 Mutations identified in Portuguese patients with type 1 Gaucher disease

Designation Exon cDNA Genomic Codon change Amino acid Restriction site
positiona positiona change change

F109V 4 442 2943 TTC Õ GTC Phe109
Õ Val + Mae II

W184R 6 667 4343 TGG Õ CGG Trp184
Õ Arg —

R359Q 8 1193 6295 CGA Õ CAA Arg359
Õ Glu – Taq I

G377S 9 1246 6748 GGC Õ AGC Gly377
Õ Ser + Pvu II

R395P 9 1301 6803 CGT Õ CCT Arg395
Õ Pro + Ban II

N396T 9 1304 6806 AAC Õ ACC Asn396
Õ Thr + Rsa I

aSee Methods for definition of cDNA and genomic sequence position.

Table 3 Characterization of normal and mutant acid β-glucosidases expressed in Sf9 cells

Acid β-glucosidase Specific activity CRIM SAa 1/CRIM SA
allele Glucosylceramide 4MU-β-glucoside

µmol/min/mg µmol/min/mg

Normal 9.6×10–2 3.3×10–2 1.00 1.00
Antisense 0 3.3×10–4 – –
F109V 6.7×10–3 1.7×10–3 0.15 6.7
W184R 2.4×10–5b 3.2×10–4 0.0004 2500
R359Q 1.3×10–3 1.4×10–3 0.016 63
G377S 7.5×10–3 1.5×10–3 0.17 5.9
R395P 5.0×10–3 1.8×10–3 0.045 22
N396T 1.3×10–2 9.8×10–4 0.14 7.2
N370S 2.3×10–2 2.7×10–3 0.18 5.5
L444P 1.3×10–3 8.8×10–4 0.057 17.5
aCRIM SA = total units of specific activity per cross-reacting immunologic material (CRIM).
bCalculated as CBE inhibitable glucosylceramide-cleaving activity.
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W184R mutant was excluded from these studies. For compar-
ative purposes, the previously characterized N370S and
L444P alleles were reanalyzed.51,52,60 The concentration of
CBE required to achieve 50% inhibition of the initial activity
(IC50) was determined. As shown in Figure 2, two of the
mutant proteins (F109V and G377S) interacted normally
with this inhibitor, as did the L444P enzyme, and had IC50

curves that overlapped that of the expressed normal enzyme.
The findings classified these mutant proteins as typical
‘group A’ enzymes.61,62 The R359Q, R395P, N396T, and N370S
mutant enzymes each had significantly reduced affinity (ie
higher IC50 values) towards CBE, categorizing them as ‘group
B’ enzymes. These results were confirmed by determining the
sensitivity of these mutant proteins to a single high concen-
tration of DNM. Assaying the normal enzyme in the presence
of 600 µM DMN resulted in an approximately 80% loss of
activity towards 4MU-Glc. The ‘group A’ enzymes, F109V,
G377S, and L444P were similarly affected, with 11, 21 and
11% activity remaining, respectively. However, the ‘group B’
enzymes encoded by R359Q, R395P, N396T, and N370S were
inhibited less, retaining 54, 72, 63 and 76% initial activity,
respectively.

Discussion
Molecular analysis of the acid â-glucosidase gene from
12 unrelated Portuguese type 1 GD patients revealed three
novel mutations, and the expression of these, and three other
reported, but uncharacterized lesions,12,28,29 provided insight
into the function of these alleles and potential genotype/
phenotype correlations. The three novel mutations were
missense mutations: F109V, the sterically non-conservative

substitution63,64 of phenylalanine by valine in a weakly
conserved (human vs murine65) region of the acid â-glucosi-
dase protein; W184R, the non-conservative substitution of a
tryptophan residue by the positively-charged arginine in the
middle of 15 (amino acids 176–189) conserved (in fact,
identical) residues; and R395P, the non-conservative substitu-
tion of arginine by proline, involving the loss of a positive
charge and introduction of a rigid side chain at residue 395,
which lies in the longest stretch (amino acids 315–406) of
conserved (ie identical except for amino acid 376) residues in
the human and murine sequences, suggesting an important
functional domain. The three additional alleles characterized
also involved residues within this highly conserved 92 amino
acid region of acid â-glucosidase which contains the catalytic
nucleophile (E34066): R359Q, the non-conservative substitu-
tion of an arginine by a glutamine (ie resulting in the loss of
a positive charge); G377S, the highly favorable substitution
of glycine by serine (both having small polar side chains),
especially at residues with surface locations; and N396T, the
conservative substitution of asparagine by the physio-chem-
ically similar threonine.

Expression studies provided the opportunity to evaluate
the function of the new and previously uncharacterized
mutations. The expressed recombinant mutant enzyme
proteins either had severely compromised function and/or
stability (W184R, R359Q and R395P), or had significant
residual catalytic activity (F109V, G377S and N396T). Little, if
any, functional enzyme was produced from the W184R,
R359Q or R395P alleles, consistent with these mutants
having severe charge or size changes in highly conserved
regions of the coding sequence. Presumably, these lesions
must be heteroallelic with a neuroprotective allele, such as
N370S, for a type 1 disease phenotype.

Of note, the three mutations with significant residual
activity had CRIM SA values (ranging from 0.14 to 0.17)
similar to that (0.18) of the well-characterized common
N370S allele, the ‘neuroprotective’ allele in type 1 GD even
when heteroallelic with the most severely compromised acid
â-glucosidase mutation. The finding that patients homo-
allelic for either G377S or N396T were essentially asympto-
matic or had mild disease (Table 1) suggests that these lesions
also are neuroprotective. The identification of type 1 GD
patients heteroallelic for either G377S or N396T and a
putative or known severe allele would further substantiate
the neuroprotective effect of these mutations.

In Portugal, type 1 GD is the most prevalent lysosomal
storage disorder. The frequency of the N370S, L444P, G377S
and N396T mutations in the Portuguese GD patients was
reported as 53.7%, 13%, 7.4% and 5.6%, respectively.12

Screening for these frequent mutations usually allows the
detection of at least one allele in Portuguese patients. To date,
the N396T lesion has only been reported in Portuguese type 1
GD patients.12 In contrast, the G377S allele also has been
reported in Spanish type 1 patients67 and in a Portuguese
Sephardic Jewish patient who was homoallelic for G377S,

Figure 2 Inhibition of expressed normal and mutant acid
â-glucosidases by the active site inhibitor, CBE (0–600 µM).
The curve for each mutation is identified by the relative
position of its final point from highest to lowest percentage of
activity remaining.
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suggesting that the G377S mutation may have Sephardic
ancestry. Of note, the finding of three presumably unrelated
patients homoallelic for the G377S allele and four pre-
sumably unrelated patients hetero- or homoallelic for the
N396T lesion suggests that these lesions have common
ancestral founders in the Portuguese population.
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