
IL
LU

ST
R

AT
IO

N
 B

Y
TH

E
P

R
O

JE
C

T
TW

IN
S

A powerful programming language with huge community support.

PICK UP PYTHON

B Y J E F F R E Y M . P E R K E L

Last month, Adina Howe took up a post
at Iowa State University in Ames. Offi-
cially, she is an assistant professor of agri-

cultural and biosystems engineering. But she
works not in the greenhouse, but in front of a
keyboard. Howe is a programmer, and a key
part of her job is as a ‘data professor’ — devel-
oping curricula to teach the next generation
of graduates about the mechanics and impor-
tance of scientific programming.

Howe does not have a degree in computer
science, nor does she have years of formal train-
ing. She had a PhD in environmental engineer-
ing and expertise in running enzyme assays
when she joined the laboratory of Titus Brown
at Michigan State University in East Lansing.

Brown specializes in bioinformatics and uses
computation to extract meaning from genomic
data sets, and Howe had to get up to speed on
the computational side. Brown’s recommenda-
tion: learn Python.

Among the host of computer-programming
languages that scientists might choose to pick
up, Python, first released in 1991 by Dutch pro-
grammer Guido van Rossum, is an increasingly
popular (and free) recommendation. It com-
bines simple syntax, abundant online resources
and a rich ecosystem of scientifically focused
toolkits with a heavy emphasis on community.

HELLO, WORLD
With the explosive growth of ‘big data’ in
disciplines such as bioinformatics, neurosci-
ence and astronomy, programming know-how

is becoming ever more crucial. Research-
ers who can write code in Python can deftly
manage their data sets, and work much more
efficiently on a whole host of research-related
tasks — from crunching numbers to cleaning
up, analysing and visualizing data. Whereas
some programming languages, such as MAT-
LAB and R, focus on mathematical and statis-
tical operations, Python is a general-purpose
language, along the lines of C and C++ (the
languages in which much commercial software
and operating systems are written). As such, it is
perhaps more complicated, Brown says, but also
more capable: it is amenable to everything from
automating small sets of instructions, to build-
ing websites, to fully fledged applications. Jes-
sica Hamrick, a psychology PhD student at the
University of California, Berkeley, has been

5 F E B R U A R Y 2 0 1 5 | V O L 5 1 8 | N A T U R E | 1 2 5

TOOLBOX

© 2015 Macmillan Publishers Limited. All rights reserved

programming in Python since 2008 and
uses it in all phases of her research. In a study
investigating how people manipulate geomet-
ric objects in their minds, for instance, she used
the language (as well as JavaScript) to generate
different shapes, present those to study partici-
pants, record their choices and analyse the data.

Despite its general-purpose power, Python is
considered less painful for beginners to learn
than other options. That accessibility is a func-
tion of both the language itself and the resources
that have been built up around it (see ‘A Python
toolkit’). For example, software execution can be
interactive — type a command, get a response
— whereas in C, a compilation step is required
to translate the code into an executable file,
which complicates the process for neophytes.
The language is also generally easier to han-
dle; users do not have to predefine whether a
variable will hold numbers or text, for instance.
The classic programming exercise of printing
‘Hello, world!’ to the screen is as simple as it can
be in Python — just type print(“Hello,
world!”) at a Python prompt and hit Enter.
“It’s easier to teach novice programmers how to
get things done in Python than in C++ or C,”
says Brown, now at the University of Califor-
nia, Davis. Python is in fact a popular choice for
introductory programming classes in general.

The community aspect is particularly impor-
tant to Python’s growing adoption. Program-
ming languages are popular only if new people
are learning them and using them in diverse
contexts, says Jessica McKellar, a software-
engineering manager at the file-storage service
Dropbox and a director of the Python Software
Foundation, the non-profit organization that
promotes and advances the language. That kind
of use sets up a “virtuous cycle”, McKellar says:
new users extend the language into new areas,
which in turn attracts still more users.

The community seems especially dedi-
cated to encouraging women, Brown notes.
There are numerous women-centric resources
available, including workshops offered by the
Hackbright Academy in San Francisco, the
non-profit organization Ladies Learning Code
in Toronto, Canada, and the global mentor-
ship group PyLadies. As a master’s student at
McGill University in Montreal, Canada, Emily
Irvine picked up Python to help her make
sense of neuronal electrophysiology data. She
was attracted to the language because of its
“simple syntax” and “massive amount of online
support”. But just as important was the wider
Python community, says Irvine, who will start
a PhD in neuroscience at Dartmouth College
in Hanover, New Hampshire, this autumn. At
the PyCon conference last April in Montreal,
“they just had such a welcoming atmosphere,
especially towards women and scientists”.

Educational resources also abound. The
Software Carpentry Foundation runs a series
of two-day workshops that focus on scientific
programming, and many of its educational
resources are available online. Online classes

are also available through Coursera in Moun-
tain View, California, and Edx in Cambridge,
Massachusetts, as are do-it-yourself tutorials,
such as those hosted by Codecademy in New
York City. (Because Python is named in honour
of Monty Python, these tutorials often work ref-
erences to the British comedy troupe into their
exercises: one Codecademy exercise, for exam-
ple, is to capitalize and calculate the length of the
phrase ‘the ministry of silly walks’.)

Irvine taught herself to code using online
courses and a healthy dose of the program-
ming Q&A site stackoverflow.com. Today, she
says, she considers herself somewhere between
a beginner and an intermediate Python pro-
grammer, or ‘pythonista’, as they are sometimes
called.

THE FULL MONTY
Of course, user-friendliness is meaningless
if researchers cannot write the software they
need. That is where Python’s packages, which
extend the language with new functionality,
come into play. “Python was developed as a
language with a philosophy that it was ‘batteries
included’,” McKellar says — it has built-in capa-
bilities that make it easy to get started right out
of the box. But, “it also
has a very mature pack-
age ecosystem around it.
Anything that you could
possibly write code to
solve, people have

written libraries to make that easier for you.”
Scientific programmers, irrespective of

their discipline, routinely use a small set of
core packages: NumPy (mathematical arrays),
SciPy (linear algebra, differential equations,
signal processing and more), SymPy (symbolic
math ematics), matplotlib (graph plotting) and
Pandas (data analysis). Another popular tool,
Cython, addresses Python’s relatively slow exe-
cution speed. Cython optimizes certain aspects
of Python code, such as ‘for’ loops (used to
instruct a program to repeatedly run a specific
block of code) that are notoriously slow, essen-
tially by converting them into C. “You can get
speed-ups that are up to 1,000 times faster than
standard Python,” says Paul Nation, a theoretical
physicist at Korea University in Seoul.

The IPython Notebook is another popular
package — Howe terms it “a coder’s lab note-
book” — that allows users to interleave data,
code and explanatory text in a single browser-
based page, rather than in separate files (see
Nature 515, 151–152; 2014).

Beyond the core packages, software packages
exist for just about every scientific discipline,
including scikit-Learn for machine learning,
Biopython for bioinformatics, PsychoPy for
psychology and neuroscience and Astropy for
astronomers. Thomas Robitaille, a coordinator
of the Astropy project and a researcher at the
Max Planck Institute for Astronomy in Heidel-
berg, Germany, says that Astropy was created
to reduce duplicated effort between research
groups. It gives users a core set of abilities,
such as ways to convert coordinates from one
astronomical mapping system to another, and a
unified interface for reading and writing differ-
ent data file formats, manipulating images and
carrying out cosmological calculations. QuTip,
another Python package, enables researchers
working on quantum mechanics to define a sys-
tem and then simulate how it behaves. The pro-
ject was launched in 2010 by Nation and Robert
Johansson, a postdoctoral fellow in RIKEN’s
Interdisciplinary Theoretical Science Research
Group in Wako, Japan, to adapt into Python a
MATLAB package that Nation was using.

Such packages are key enablers of McKellar’s
‘virtuous cycle’. But researchers could probably
do their work using any language, provided they
put in the time to learn it. (Indeed, in many lan-
guages, including Python, it is possible to run
algorithms written in a different language,
thereby allowing researchers to reuse their old
code.) The difficult part of learning to program
lies with the fundamentals, says Brown — once
a researcher has those nailed down, adapting
to a new language is just a matter of syntax.
What matters most in the early stages is having
a good support network. “Pick the program-
ming language based on what people around
you are using,” Brown advises. Increasingly, that
language is Python. ■

Jeffrey M. Perkel is a writer based in
Pocatello, Idaho.

●● Install Python through Anaconda
or Enthought Canopy and find
documentation at the Python Software
Foundation

●● Lessons for beginners can be found
at Software Carpentry; Learn Python
the Hard Way; Codecademy; and Think
Python

●● Other online resources on Python
programming include a course from the
Massachusetts Institute of Technology in
Cambridge, lecture notes from Thomas
Robitaille at the Max Planck Institute
for Astronomy in Heidelberg, Germany,
and a widely recommended essay from
Google’s head of research, Peter Norvig

●● Open-source packages are available
through SciPy.org

●● Guides to programming and
community support are available
through Ladies Learning Code and Stack
Overflow. PyCon.org lists conferences
around the world.

Links to these resources can be found at
go.nature.com/x2pzh1

A P Y T H O N T O O L K I T
How to get started

 NATURE.COM
For more on scientific
software, apps and
online tools, visit:
nature.com/toolbox

1 2 6 | N A T U R E | V O L 5 1 8 | 5 F E B R U A R Y 2 0 1 5

TOOLBOX

© 2015 Macmillan Publishers Limited. All rights reserved

	Programming: Pick up Python
	References

