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When the drug Avastin was approved 
as a treatment for breast cancer in 
2004, physicians and researchers 

saw it as a powerful weapon in their armoury. 
Growing tumours need increased amounts 
of oxygen, so they send out chemical signals 
that coax the growth and development of new 
blood vessels, a process known as angiogen-
esis. Avastin (bevacizumab) interferes with 
this process by cutting off the tumour’s oxygen 
supply, causing it to shrink. But doctors found 
that Avastin often left more invasive tumours 
in its wake. A subsequent study found that, 

although Avastin did suffocate tumour cells, 
the lack of oxygen encouraged the growth of 
cancer stem cells, resulting in more aggressive 
tumours. The US Food and Drug Administra-
tion revoked its approval in 2011. 

Cancer is not a simple disease. Tumours are 
made up of various types of cell in different 
stages of their life cycle, and these cells send 
out and respond to a wide range of chemical 
signals. They are laced with blood vessels and 
interact with the surrounding tissue, with the 
organs they invade, and with any drugs used to 
combat them. Gene sequencing and proteom-
ics have yielded reams of data that scientists are 
only just beginning to parse. To understand this 

complexity, and to explain why a drug such as 
Avastin doesn’t work as expected, research-
ers are turning to computer models that help 
them visualize how cancer grows, gener-
ate ideas about how to combat that growth,  
and simulate the potential results of possible 
interventions.

BEATING THE SYSTEM
“The amount of understanding, knowledge and 
information we have at hand is huge, but it’s too 
complicated to make sense of, in terms of what’s 
going on in the system,” says Jasmin Fisher, a 
neuroimmunologist in the Programming Prin-
ciples and Tools group at Microsoft Research in 
Cambridge, United Kingdom. 

With all this information, it’s possible to 
miss the cancer forest for the cellular trees, says 
biophysicist James Glazier, director of the Bio-
complexity Institute at Indiana University in 
Bloomington. Researchers have tended to focus 
on genes and proteins, but to understand and 
fight the disease, it must be viewed as a system, 
rather than merely as a set of cellular activities. 
According to Glazier, the recent focus on genet-
ics and pathways in individual cells has caused 
many researchers to neglect the systemic view. 
“No amount of information about what happens 
inside a single cell can ever tell you what a tissue 
is going to do,” he says. “Much of the information 
and complexity of tissues and life is embedded in 
the way cells talk to each other and the extracel-
lular environment.” 

It was this need to investigate cancer as a holis-
tic system that prompted mathematician Philip 
Maini, head of the Center for Mathematical Biol-
ogy at the University of Oxford, UK, to model 
the behaviour of antiangiogenic drugs. Because 
these drugs are most effective when used in 
combination with radiation or another chemo-
therapy, the theory that they work strictly by cut-
ting off blood flow and starving the tumour just 
didn’t make sense. Maini’s model shows that its 
is the blood-vessel density inside the tumour that 
holds the key to the drug’s effectiveness1.

Such modelling can be used to determine 
whether a drug is likely to work, or even to sug-
gest targets for future drugs. “You can test the 
ideas in a simulation without even killing a rat,” 
Glazier says.

Creating these complex simulations requires 
computational modelling, says Adriano Henney 
of the University of Heidelberg, director of the 
German Virtual Liver Network, a collaboration 
to develop computational models of the entire 
organ. “This approach is going to be important 
if we are to understand how medicines operate 
in complex diseases.” 

OPEN-SOURCE MODELLING
In one step towards such simulations, Fisher 
is developing computational models at Micro-
soft that describe molecular pathways within 
cells, how those pathways operate, and the 
way cross-talk between them affects the pro-
cess of determining a cell’s fate. “We look on a 
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Computing cancer
Software models of complex tissues and disease are  
yielding a better understanding of cancer and suggesting 
potential treatments.

Jasmin Fisher’s computer models help biologists understand the molecular pathways in cancer cells.
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biological process as if it were a computer pro-
gram, so we ask ‘what is the algorithm inside 
the cell that is affecting behaviour?’,” she says. 

Fisher calls this modelling approach “exe-
cutable biology”, as it takes a biological under-
standing of cellular processes and turns them 
into a set of formal instructions that a com-
puter could execute2. For instance, a stem cell 
follows a different series of steps depending 
on whether it differentiates into a blood cell or 
a heart muscle cell. Several of those changes 
occur simultaneously and can be altered by 
feedback the cell receives as it matures. Because 
living processes are complex and nonlinear, 
Fisher’s program makes it easier for research-
ers to perform manipulations, such as chang-
ing the sequence of events or decreasing the 
strength of a signal, to see whether the steps 
they have modelled lead to an outcome that 
matches up with experimental results. 

The challenge in developing models for dif-
ferent levels of organization, Maini says, lies in 
finding the right mathematical approach for 
each scale. It might be best to describe intra-
cellular activity, such as forming a protein, 
by using differential equations, for example, 
whereas cell-to-cell signalling might require 
a different approach, such as rule-based pro-
gramming, to define how cells interact. 

To deal with these different scales, Glazier 
has developed an open-source modelling 
methodology called CompuCell3D that treats 
cells, components within cells, or cell clusters 
as discrete objects. The user can input bio-
chemical information into a model of a cell — 
such as how it responds to chemical stimuli, 
or how strongly it sticks to other cells — and 
watch how the system responds3.

Glazier started developing the model in 
2000, basing it on a previous model he built 
that simulates the growth of grains in crystal-
line structures. This turned out to be similar to 
the way bubbles grow in liquid foam, which in 
turn could be extended to describe the interac-
tion of cells in developing embryos.

IN SILICO INSIGHTS
The models developed by Glazier, Fisher and 
others are designed to allow cancer biologists 
with little or no programming knowledge to 
create their own simulations to run in silico 
experiments. “We wanted to build a platform 
that would allow you to create simulations that 
other people could run, adapt, modify and so 
on, so the models would be shareable and repro-
ducible,” Glazier says. This involves replacing 
detailed computer coding that describes biologi-
cal processes with simplified representations of 
those processes that biologists can easily under-
stand. In Fisher’s program, a biologist can select 
particular cells, proteins and genes, and then 
drag-and-drop them on a computer screen to 
create the conditions for the simulation. 

By using CompuCell3D as a tool to build 
a model of a tumour, Utah State University 
researchers Nicholas Flann and Gregory 

Podgorski have been exploring angiogenesis, 
hoping to find ways to inhibit it and prevent 
tumour growth4. A microtumour emits a pro-
tein called vascular endothelial growth factor 
(VEGF), which signals blood vessels in nearby 
tissue to grow towards it. In the body, that pro-
cess can take from 24 to 72 hours; on the com-
puter, it takes about five minutes. 

Flann, a computer scientist, and Podgor-
ski, a biologist, gave the model 40 biochemical 
parameters, such as a cell’s ability to detect a 
particular growth factor, or how strongly the tip 
of a growing blood vessel would stick to a stro-
mal cell in the  surrounding tissue. The software 
then chose three parameters, changed one at 
random, and looked to see whether the change 
improved or reduced blood-vessel growth in the 
model. In all, there were about 100,000 possible 

parameter combinations that might deprive the 
tumour of nutrients. To give the results statisti-
cal strength, each combination was tested 128 
times, running in parallel on two large computer 
networks belonging to the US National Science 
Foundation and the US Air Force. Parallel pro-
cessing allowed the researchers to perform in a 
few months simulations that would have taken 
a single processor about five years.

The first clue that the algorithm was effec-
tive was that it suggested known interventions, 
blocking pathways that existing drugs already 
act on. But it also produced other, previously 
unknown results. For instance, according to 
the model, manipulating the adhesion between 
the endothelial tip cells on the leading edge of 
blood vessels and the surrounding tissue causes 
the resulting vessels to become trapped, unable 
to provide adequate blood flow to the tumour. 
This, says Flann, suggests a possible avenue of 
attack for drug developers. In a system compris-
ing hundreds of cells interacting, moving, secret-
ing and reacting to chemicals, simply knowing 
the genetic mutation behind the tumour or the 
pathways within the cell would never have led to 
that kind of insight, says Flann. “The system is 
a complex spatial and dynamic system that just 
can’t be predicted.”

Computational models can run experiments 
in silico that would be too expensive and time-
consuming to carry out in the lab.They can gen-
erate and test new hypotheses, and provide a way 
of tracing the steps that led to a particular out-
come. But the models must also be validated, as 
they are no use unless they accurately represent 
disease in the real world. Maini worries that com-
putational models that combine data from dis-
parate sources — mixing mouse models and rat 
models with human cells, for example — might 
lead researchers astray. For instance, the anti-
angiogenic drugs he examined starve the tumour 
more directly in mice than in humans, so an 
accurate model of human tumours is required. 
And the computer modellers say that scientists 
will need to tie the results of the computer simu-
lations to data they can replicate in their labs. 

Even so, the models are already giving scien-
tists new ways to explore cancer’s complexity

 “It’s a toolbox that is a way of handling the 
mass of complex data we’ve accumulated in a 
way that our brains can’t,” says Henney. “It’s an 
approach that applies engineering principles, 
physics, chemistry and mechanical engineer-
ing to biology. I can’t see how we can handle the 
complexity of the post-genome world in any 
other way than using mathematics and physics 
principles.” ■

Neil Savage is a freelance science and technology 
writer based in Lowell, Massachusetts.
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MODELLING TUMOUR GROWTH 
This computer model of tumour vascularization, 
a process known as angiogenesis, allows for a 
close examination of how cellular growth is 
a�ected by blood-vessel development.

MODELLING TUMOUR GROWTH 
This computer model of tumour vascularization, 
a process known as angiogenesis, allows for a 
close examination of how cellular growth is 
a�ected by blood-vessel development.
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