Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nuclear pore complexes in the organization of silent telomeric chromatin

Abstract

The functional regulation of chromatin is closely related to its spatial organization within the nucleus. In yeast, perinuclear chromatin domains constitute areas of transcriptional repression1,2,3. These ‘silent’ domains are defined by the presence of perinuclear telomere clusters4. The only protein found to be involved in the peripheral localization of telomeres is Yku70/Yku80 (ref. 5). This conserved heterodimer6 can bind telomeres7 and functions in both repair of DNA double-strand breaks8,9,10,11 and telomere maintenance7,12,13,14,15. These findings, however, do not address the underlying structural basis of perinuclear silent domains. Here we show that nuclear-pore-complex extensions formed by the conserved TPR16,17 homologues Mlp1 and Mlp218,19 are responsible for the structural and functional organization of perinuclear chromatin. Loss of MLP2 results in a severe deficiency in the repair of double-strand breaks. Furthermore, double deletion of MLP1 and MLP2 disrupts the clustering of perinuclear telomeres and releases telomeric gene repression. These effects are probably mediated through the interaction with Yku70. Mlp2 physically tethers Yku70 to the nuclear periphery, thus forming a link between chromatin and the nuclear envelope. We show, moreover, that this structural link is docked to nuclear-pore complexes through a cleavable nucleoporin, Nup14520. We propose that, through these interactions, nuclear-pore complexes organize a nuclear subdomain that is intimately involved in the regulation of chromatin metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Deletion of MLP2 leads to impairment of DNA DSB repair.
Figure 2: Mlp2 mediates the perinuclear localization of Yku70–myc.
Figure 3: Double deletion of MLP1 and MLP2 releases telomeres from their perinuclear localization and leads to de-repression of telomeric silencing.
Figure 4: Mlp1 and Mlp2 are docked to the nuclear pore complex (NPC) through the cleavable nucleoporin Nup145.

Similar content being viewed by others

References

  1. Maillet,L. et al. Evidence for silencing compartments within the yeast nucleus: a role for telomere proximity and Sir protein concentration in silencer-mediated repression. Genes Dev. 10, 1796–1811 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Andrulis,E. D., Neiman,A. M., Zappulia,D. C. & Sternglanz,R. Perinuclear localization of chromatin facilitates transcriptional silencing. Nature 394, 592–595 (1998); erratum, ibid 395, 525 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Gottschling,D. E., Aparicio,O. M., Billington,B. L. & Zakian,V. A. Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63, 751–762 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Gotta,M. et al. The clustering of telomeres and colocalization with Rap1, Sir3, and Sir4 proteins in wild-type Saccharomyces cerevisiae. J. Cell Biol. 134, 1349–1363 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Laroche,T. et al. Mutation of yeast Ku genes disrupts the subnuclear organization of telomeres. Curr. Biol. 8, 653–656 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Feldmann,H. et al. HDF2, the second subunit of the Ku homologue from Saccharomyces cerevisiae. J. Biol. Chem. 271, 27765–27769 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Gravel,S., Larrivee,M., Labrecque,P. & Wellinger,R J. Yeast Ku as a regulator of chromosomal DNA end structure. Science 280, 741–744 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Milne,G. T., Jin,S., Shannon,K. B. & Weaver,D. T. Mutations in two Ku homologs define a DNA end-joining repair pathway in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 4189–4198 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Boulton,S. J. & Jackson,S. P. Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. EMBO J. 15, 5093–5103 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Moore,J. K. & Haber,J. E. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 2164–2173 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Barnes,G. & Rio,D. DNA double-strand-break sensitivity, DNA replication, and cell cycle arrest phenotypes of Ku-deficient Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 94, 867–872 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Porter,S. E., Greenwell,P. W., Ritchie,K. B. & Petes,T. D. The DNA-binding protein Hdf1p (a putative Ku homologue) is required for maintaining normal telomere length in Saccharomyces cerevisiae. Nucleic Acids Res. 24, 582–585 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Boulton,S. J. & Jackson,S. P. Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J. 17, 1819–1828 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nugent,C. I. et al. Telomere maintenance is dependent on activities required for end repair of double-strand breaks. Curr. Biol. 8, 657–660 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Polotnianka,R. M., Li,J. & Lustig,A. J. The yeast Ku heterodimer is essential for protection of the telomere against nucleolytic and recombinational activities. Curr. Biol. 8, 831–834 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Cordes,V. C., Reidenbach,S., Rackwitz,H. R. & Franke,W. W. Identification of protein p270/Tpr as a constitutive component of the nuclear pore complex-attached intranuclear filaments. J. Cell Biol. 136, 515–529 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bangs,P. et al. Functional analysis of Tpr: identification of nuclear pore complex association and nuclear localization domains and a role in mRNA export. J. Cell Biol. 143, 1801–1812 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kolling,R., Nguyen,T., Chen,E. Y. & Botstein,D. A new yeast gene with a myosin-like heptad repeat structure. Mol. Gen. Genet. 237, 359–369 (1993).

    CAS  PubMed  Google Scholar 

  19. Strambio-de-Castillia,C., Blobel,G. & Rout,M. P. Proteins connecting the nuclear pore complex with the nuclear interior. J. Cell Biol. 144, 839–855 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Teixeira,M. T., Fabre,E. & Dujon,B. Self catalysed cleavage of the yeast nucleoporin Nup145p precursor. J. Biol. Chem. 274, 32439–32444 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Martin,S. G., Laroche,T., Suka,N., Grunstein,M. & Gasser,S. M. Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast. Cell 97, 621–633 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Shore,D. Telomere length regulation: getting the measure of chromosome ends. Biol. Chem. 378, 591–597 (1997).

    CAS  PubMed  Google Scholar 

  23. Schimmang,T., Tollervey,D., Kem,H., Frank,R. & Hurt,E. C. A yeast nucleolar protein related to mammalian fibrillarin is associated with small nucleolar RNA and is essential for viability. EMBO J. 8, 4015–4025 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee,S. E. et al. Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell 94, 399–409 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Trelles-Sticken,E., Loidl,J. & Scherthan,H. Bouquet formation in budding yeast: initiation of recombination is not required for meiotic telomere clustering. J. Cell Sci. 112, 651–658 (1999).

    CAS  PubMed  Google Scholar 

  26. Blobel,G. Gene gating: a hypothesis. Proc. Natl Acad. Sci. USA 82, 8527–8529 (1985).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mages,G. J., Feldmann,H. M. & Winnacker,E. L. Involvement of the Saccharomyces cerevisiae HDF1 gene in DNA double-strand break repair and recombination. J. Biol. Chem. 271, 7910–7915 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Kilmartin,J. V. & Adams,A. E. Structural rearrangements of tubulin and actin during the cell cycle of the yeast Saccharomyces. J. Cell Biol. 98, 922–933 (1984).

    Article  CAS  PubMed  Google Scholar 

  29. Aris,J. P. & Blobel,G. Yeast nuclear envelope proteins cross react with an antibody against mammalian pore complex proteins. J. Cell Biol. 108, 2059–2067 (1989).

    Article  CAS  PubMed  Google Scholar 

  30. Olivo,J.-C. Automatic detection of spots in biological images by a wavelet-based selective filtering technique. Proc. IEEE Int. Conference on Image Processing ICIP 1996, 311–314 (1996).

Download references

Author information

Authors and Affiliations

Authors

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galy, V., Olivo-Marin, JC., Scherthan, H. et al. Nuclear pore complexes in the organization of silent telomeric chromatin. Nature 403, 108–112 (2000). https://doi.org/10.1038/47528

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/47528

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing