Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice

Abstract

Tuberculosis is the leading cause of death in the world resulting from a single bacterial infection1. Despite its enormous burden on world health, little is known about the molecular mechanisms of pathogenesis of Mycobacterium tuberculosis. Bacterial multiplication and concomitant tissue damage within an infected host, including experimentally infected mice, occurs primarily in the lungs—the favoured niche of M. tuberculosis2. Although it has been proposed that the distinctive cell wall of M. tuberculosis is important for virulence, rigorous genetic proof has been lacking. Here, using signature-tagged mutagenesis, we isolated three attenuated M. tuberculosis mutants that cannot synthesize or transport a complex, cell wall-associated lipid called phthiocerol dimycocerosate (PDIM) which is found only in pathogenic mycobacteria3,4. Two mutants have transposon insertions affecting genes implicated in PDIM synthesis; the third has a disruption in a gene encoding a large transmembrane protein required for proper subcellular localization of PDIM. Synthesis and transport of this complex lipid is only required for growth in the lung; all three mutants are unaffected for growth in the liver and spleen. This clearly shows that a lipid is required for M. tuberculosis virulence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Three related, avirulent mutants of M. tuberculosis isolated by STM mutagenesis.
Figure 2: The three giv mutants cannot synthesize or transport PDIM.
Figure 3: PDIM synthesis and export is required for M. tuberculosis replication in mouse lungs but not in the liver or spleen.
Figure 4: Model for synthesis and export of PDIM.

Similar content being viewed by others

References

  1. World Health Organization, World Health Report 1999 http://www.who.int/whr/1999/en/report.htm (1999).

  2. Garay,S. M. in Tuberculosis (eds Rom, W. N. & Garay, S. M.) 373–412 (Little, Brown and Company, Boston, 1996).

    Google Scholar 

  3. Brennan,P. J. & Nikaido,H. The envelope of mycobactria. Annu. Rev. Biochem. 64, 29–63 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Kolattukudy,P. E., Fernandes,N. D., Azad,A. K., Fitzmaurice,A. M. & Sirakova,T. D. Biochemistry and molecular genetics of cell-wall lipid biosynthesis in mycobacteria. Mol. Microbiol. 24, 263–270 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Hensel,M. et al. Simultaneous identification of bacterial virulence genes by negative selection. Science 269, 400–403 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Chiang,S. L. & Mekalanos,J. J. Use of signature-tagged transposon mutagenesis to identify Vibrio cholerae genes critical for colonization. Mol. Microbiol. 27, 797–805 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Mei,J. M., Nourbakhsh,F., Ford,C. W. & Holden,D. W. Identification of Staphylococcus aureus virulence genes in a murine model of bacteraemia using signature-tagged mutagenesis. Mol. Microbiol. 26, 399–407 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Azad,A. K., Sirakova,T. D., Fernandes,N. D. & Kolattukudy,P. E. Gene knockout reveals a novel gene cluster for the synthesis of a class of cell wall lipids unique to pathogenic mycobacteria. J. Biol. Chem. 272, 16741–16745 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Mathur,M. & Kolattukudy,P. E. Molecular cloning and sequencing of the gene for mycocerosic acid synthase, a novel fatty acid elongating multifunctional enzyme, from Mycobacterium tuberculosis var. bovis Bacillus Calmette-Guerin. J. Biol. Chem. 267, 19388–19395 (1992).

    CAS  PubMed  Google Scholar 

  10. Azad,A. K., Sirakova,T. D., Rogers,L. M. & Kolattukudy,P. E. Targeted replacement of the mycocerosic acid synthase gene in Mycobacterium bovis BCG produces a mutant that lacks mycosides. Proc. Natl Acad. Sci. USA 93, 4787–4792 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cole,S. T. et al. Deciphering the biology of Mycobactrium tuberculosis from the complete genome sequence [see comments]. Nature 393, 537–544 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Fitzmaurice,A. M. & Kolattukudy,P. E. An acyl-CoA synthase (acoas) gene adjacent to the mycocerosic acid synthase (mas) locus is necessary for mycocerosyl lipid synthesis in Mycobacterium tuberculosis var. bovis. BCG. J. Biol. Chem. 273, 8033–8039 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Fitzmaurice,A. M. & Kolattukudy,P. E. Open reading frame 3, which is adjacent to the mycocerosic acid synthase gene, is expressed as an acyl coenzyme A synthase in Mycobacterium bovis BCG. J. Bacteriol. 179, 2608–2615 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bystrykh,L. V. et al. Production of actinorhodin-related “blue pigments” by Streptomyces coelicolor A3(2). J. Bacteriol. 178, 2238–2244 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pierce,C. H. & Dubos,R. J. Differential characteristics in vitro and in vivo of several substrains of BCG. II. Morphologic characteristics in vitro and in vivo. Am. Rev. Tuberc. Pulm. Dis. 74, 667–682 (1956).

    Google Scholar 

  16. Middlebrook,G., Dubos,R. J. & Pierce,C. Virulence and morphological characteristics of mammalian tubercle bacilli. J. Exp. Med. 86, 175–183 (1947).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rainwater,D. L. & Kolattukudy,P. E. Synthesis of mycocerosic acids from methylmalonyl coenzyme A by cell-free extracts of Mycobacterium tuberculosis var. bovis BCG. J. Biol. Chem. 258, 2979–2985 (1983).

    CAS  PubMed  Google Scholar 

  18. Hunter,S. W. & Brennan,P. J. Further specific extracellular phenolic glycolipid antigens and a related diacylphthiocerol from Mycobacterium leprae. J. Biol. Chem. 258, 7556–7562 (1983).

    CAS  PubMed  Google Scholar 

  19. Besra,G. S. & Chatterjee,D. in Tuberculosis: Pathogenesis, Protection, and Control (ed. Bloom, B. R.) 285–306 (American Society for Microbiology, Washington DC, 1994).

    Book  Google Scholar 

  20. Bardarov,S. et al. Conditionally replicating mycobacteriophages: a system for transposon delivery to Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 94, 10961–10966 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ochman,H., Gerber, A. S. & Hartl,D. L. Genetic applications of an inverse polymerase chain reaction. Genetics 120, 621–623 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Folch,J., Lees,M. & Stanley,G. H. S. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497–509 (1957).

    CAS  PubMed  Google Scholar 

  23. McAdam,R. A. et al. In vivo growth characteristics of leucine and methionine auxotrophic mutants of Mycobacterium bovis BCG generated by transposon mutagenesis. Infect. Immun. 63, 1004–1012 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank P. Brennan for valuable discussions and for purified PDIM; M. Glickman, J. McKinney, R. Morbidoni and P. Draper for helpful discussions; P. Walter, M. Glickman and J. Blanchard for critical review of the manuscript and encouragement; D. Chatterjee, J. Torrelles, D. Dick and M. Scherman for mass spectrum and NMR analysis; R. Russell for valuable discussions and assistance with histopathology; and R. McAdam and S. Quan for the inverse PCR protocol. J.S.C. is a Fellow of The Jane Coffin Childs Memorial Fund for Medical Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William R. Jacobs Jr.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cox, J., Chen, B., McNeil, M. et al. Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 402, 79–83 (1999). https://doi.org/10.1038/47042

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/47042

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing