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An old adage says: “Show me your friends, 
and I’ll know who you are.” In the same 
way, finding interaction partners for 

a protein can reveal its function. To that end, 
researchers are now building entire networks of 
protein–protein interactions. Unlike biological 
pathways, which represent a sequence of molec-
ular interactions leading to a final result — for 
example, a signalling cascade — networks are 
interlinked. Represented as starbursts of pro-
tein ‘nodes’ linked by interaction ‘edges’ to form 
intricate constellations, they provide insight into 
the mechanisms of cell functions. Furthermore, 
placing proteins encoded by disease genes into 
these networks will let researchers determine 
the best candidates for assessing disease risk 
and targeting with therapies.

“This is the next step after the Human 
Genome Project,” says Trey Ideker, a systems 
biologist at the University of California, San 
Diego, and principal investigator at the National 
Resource for Network Biology, which provides 

open-source software for network visualiza-
tion. “That effort identified 30,000 genes, but 
that is not the end goal. How the genes work in 
pathways and how these pathways function in 
disease states and development is the end goal. 
To accomplish this we will need to systemati-
cally map gene and protein interactions.”

Unlike the genome, the interactome — the 
set of protein-to-protein interactions that 
occurs in a cell — is dynamic. Many inter-
actions are transient, and others occur only 
in certain cellular contexts or at particular 
times in development. The interactome may 
be tougher to solve than the genome, but the 
information, researchers say, is crucial for a 
complete understanding of biology. 

The RighT PaRTneRs
At any time, a human cell may contain about 
130,000 binary interactions between proteins1. 
So far, a mere 33,943 unique human protein–
protein interactions are listed on BioGRID 
(http://thebiogrid.org), a database that stores 
interaction data. Clearly, there is work to do.

There are two main approaches for detecting 
interacting proteins: techniques that measure 
direct physical interactions between protein 
pairs — binary approaches — and those that 
measure interactions among groups of proteins 
that may not form physical contacts — co-
complex methods (see ‘Tools for the search’). 

The most frequently used binary method is 
the yeast two-hybrid (Y2H) system2. It has vari-
ations involving different reagents, and has been 
adapted to high-throughput screening. The 
strategy interrogates two proteins, called bait 
and prey, coupled to two halves of a transcrip-
tion factor and expressed in yeast. If the proteins 
make contact, they reconstitute a transcription 
factor that activates a reporter gene. 

Another method for identifying binary 
interactions is luminescence-based mamma-
lian interactome mapping (LUMIER), a high-
throughput approach developed by Jeff Wrana 
at the Samuel Lunefeld Research Institute in 
Toronto, Canada. This strategy fuses Renilla 
luciferaze (RL) enzyme, which catalyses light-
emitting reactions, to a bait protein, which is 
expressed in a mammalian cell along with can-
didate protein partners tagged with a polypep-
tide called Flag. Researchers use a Flag antibody 
to immunoprecipitate all proteins with the Flag 
tag, along with any that interact with them. 
Interactions between the RL-fused bait and 
the Flag-tagged prey are detected when light 
is emitted. Other binary methods include the 
mammalian protein–protein interaction trap 
and techniques based on proteome chips.

The most common co-complex method is 
co-immunoprecipitation (coIP) coupled with 
mass spectrometry (MS). In this approach, a 
protein bait is tagged with a molecular marker. 
Several types of tags are commercially available; 
each requires a distinct biochemical technique 
to recognize the tag and fish the bait protein out 
of the cell lysate, bringing with it any interacting 
proteins. These are then identified by MS.

In addition to these empirical methods, 
researchers have used computational techniques 
to predict interactions on the basis of factors 
such as amino-acid sequence and structural 
information. “People ask ‘Why are you predict-
ing interactions when you can just do the exper-
iment?’” says Gary Bader, a bioinformatician at 
the University of Toronto. “But experimental 
techniques fail for some proteins.”

False Readings
Every step of a procedure to detect protein–
protein interactions — from the reagents used 
to the cell types and experimental conditions — 
influences the proteins that are identified. Two 
studies this year used similar methods to iden-
tify interacting proteins in transcription factors 
in embryonic stem cells3,4; there was incomplete 
overlap between the resulting data sets. “If you 
use the same protocol you will get reproducible 
lists of proteins. But different labs use different 
protocols, which affects the end result,” says 
Raymond Poot, a cell biologist at Erasmus MC 

Interactome under 
construction
Developing techniques are helping researchers to build the 
protein interaction networks that underlie all cell functions.

The human interactome contains more than 100,000 protein interactions, only a fraction of which are known.
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hospital in Rotterdam, the Netherlands, and 
lead author of one of the studies.

In his protocol, Poot pulled interacting pro-
teins from cells using nuclear extracts express-
ing different Flag-tagged transcription factors. 
He added a nuclease to his reactions to remove 
DNA and eliminate possible artefacts caused 
by proteins binding to it. “Transcription fac-
tors bind to DNA so you are likely to pull out 
DNA-binding factors that are not directly inter-
acting,” he explains. Purifying many different 
transcription factors with the same protocol 
also enabled the researchers to determine which 
interactions were most likely to be specific. For 
example, proteins that consistently co-purified 
with all transcription factors would be treated 
as unlikely to indicate a genuine interaction.

Calling out false positives — reported inter-
actions that don’t actually occur — and false 
negatives — interactions that do occur but are 
not picked up by the experimental protocol or 
are discarded — is one of the main challenges 
in the field. “Normally when you do a coIP fol-
lowed by MS you will get hundreds of protein 
candidates interacting with any one bait,” says 
Wade Harper, a cell biologist at Harvard Medi-
cal School in Boston, Massachusetts. “When 
you weed out all the stochastic and non-specific 
interactions you end up with many fewer pro-
teins. Some proteins in large complexes might 
have 30–50 partners, others only 4–5.”

One way in which researchers increase the 
accuracy of their results is to use more than one 
method (for example, Y2H plus LUMIER) to 

detect the interactions. But the definition of a 
‘real’ interaction depends on the context. “Does 
a real interaction mean that two proteins inter-
act if they are placed next to each other in a 
test tube, or that they must interact in a cell? Or 
does real mean that the interaction should have 
a biological function?” asks Ideker. Researchers 
can home in on functional interactions by com-
bining data on interactions with other types of 
biological information, such as genetic interac-
tions, protein localizations or gene expression. 
For instance, proteins whose genes are co-
expressed are likely to interact with each other 
or to be part of the same complex or pathway.

Many tools are available on the web for inte-
grating different types of information about a 
given protein or gene. One is GeneMANIA, 
developed by Bader’s group in collaboration 
with Quaid Morris, a computational biolo-
gist also at the University of Toronto. A user 
enters the gene names into GeneMANIA; 
the program provides a list of genes that are 
functionally similar or have shared properties, 
such as similar expression or localization, and 
then displays a proposed interaction network, 
showing relationships among the genes and 
the type of data used to gather that informa-
tion. The user can click on any node to obtain 
information about the gene and on any link 
to obtain information about their relationship 
(such as citations for any published studies or 
other sources of data). “It’s like a Google for 
genetic and protein information,” says Bader. 

Other web-based interfaces that predict 
gene functions include STRING (http://string-
db.org) developed at the European Molecular 
Biology Laboratory in Heidelberg, Germany. 
It hunts for protein interactions on the basis of 
genomic context, high-throughput experiments, 
co-expression and data from the literature.

KeePing scoRe
To select real protein–protein interactions, 
Harper and some members of his lab, Matt Sowa 
and Eric Bennett, developed a software platform 
called CompPASS to assign confidence scores 
to an interaction detected by MS5. CompPASS 
takes data sets of interacting proteins (including 
those identified in experiments) and measures 
frequency, abundance and reproducibility of 
interactions to calculate the score. 

This year, Harper used CompPASS to iden-
tify interactions among proteins involved in 
autophagy, the process by which cellular pro-
teins and organelles are engulfed into vesicles 
and delivered to the lysosome to be degraded. 
Starting with 32 proteins known to have a role 
in autophagy, they identified 2,553 interacting 
proteins using coIP–MS. CompPASS then nar-
rowed the list down to 409 high-confidence 
interacting proteins with 751 interactions6. 

Ideker’s group used a different approach 
to map interactions among human mitogen-
activated protein kinases (MAPKs), which 
respond to external stimuli and regulate cell 
function. Having used Y2H to identify more 

the two main methods for finding 
protein–protein interactions are the 
yeast two-hybrid (y2H) system and 
co-immunoprecipitation followed by mass 
spectrometry. Several companies sell 
reagents for both approaches. invitrogen of 
Carlsbad, California, sells the proQuest two-
Hybrid System with gateway technology. 
this is based on y2H, with modifications 
to decrease false-positive results and allow 
rapid characterization, says the company. 
Other firms provide vectors used to produce 
proteins with affinity tags, which can easily 
be immunoprecipitated along with other 
interacting proteins. a polypeptide tag called 
Flag is popular among researchers, and 
Sigma aldrich of St Louis, Missouri, provides 
several Flag-genes for purchase. promega 
in Madison, Wisconsin, has the Halotag 
technology, in which a protein of interest 
is expressed in fusion with a tag protein 
engineered from a bacterial enzyme. this 
tag can be used to purify the protein, and 
any interacting with it, by binding to a resin. 
the tag is cleaved off using a protease. 

For researchers who don’t have the time 
or infrastructure to do the experiments, 

companies such as Hybrigenics in paris 
and Dualsystems Biotech of Schlieren, 
Switzerland, offer y2H-based screening. 
“We have complex libraries with ten times 
more independent clones than most other 
libraries, which we screen to saturation. 
and rather than screening full-length 
proteins, we screen for interactions with 
domains,” says etienne Formstecher, 
director of scientific projects and sales at 
Hybrigenics. “Full-length proteins can have 
some domains buried and not available to 
interact, at least in yeast where you may 
not have signals to unlock a closed protein 
conformation.” a customer is given a list 
of proteins that interact with the protein 
of interest; it indicates which domains are 
making contact and provides a confidence 
score for each interaction.

innoprot in Derio, Spain, provides 
an interaction service using tag-based 
purification designed for high-throughput 
analysis. and invitrogen’s protoarray 
protein–protein interaction Service uses 
microarrays containing more than 9,000 
human proteins to identify proteins that 
interact with any protein of interest. L.b.

tools for the search

Methods such as the yeast two-hybrid system allow scientists to work out which proteins interact.
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than 2,000 interactions among known MAPKs, 
Ideker used evidence including conservation 
of interactions among different species to win-
now that down to a core network of 641 high-
confidence interactions7.

For some of the proteins there was no pre-
vious evidence of interactions with MAPKs. 
Ideker and his colleagues knocked down the 
expression of these proteins using RNA inter-
ference, then looked for the effect of the knock-
downs on proteins known to be activated by 
MAPKs. This allowed them to confirm that 
about one-third of their interactions had a role 
in MAPK signalling. 

These methods are helping to weed out false 
positives and provide associated confidence 
scores, but the problem of false negatives per-
sists. “With these assays we try to get false posi-
tives down to zero. The hit you take is on false 
negatives. So now you can be highly confident 
of your data but you are probably probing only 
about 20% of the interactome,” says Ideker. “We 
would like to get every interaction but we do 
not get even close with current technologies.”

New methods may become available to iden-
tify interactions that escape detection by cur-
rent techniques (see ‘Real-time analysis’). In 
the meantime, one way to address the problem 
is to combine procedures for detecting inter-
actions, each sampling a different portion of 
the interactome. The interaction data obtained 
in an experiment can also be combined with 
that available in public databases, thus provid-
ing a more complete picture, says Bader. 

FRom daTa To neTwoRKs
Protein–protein interactions are only the raw 
material for networks. To build a network, 
researchers typically combine interaction data 
sets with other sources of data. Primary data-
bases that contain protein–protein interactions 
include DIP (http://dip.doe-mbi.ucla.edu), 
BioGRID, IntAct (www.ebi.ac.uk/intact) and 
MINT (http://mint.bio.uniroma2.it). These 
databases have committed to making records 

available through a common language called 
PSICQUIC, to maximize access. 

Other types of data that can be combined with 
protein–protein interactions include informa-
tion on gene expression, cellular co-localization 
of proteins (based on microscopy), genetic 
information, metabolic and signalling pathways, 
and data from high-throughput assays.

“One challenge computationally is integrat-
ing heterogeneous data sets to build a network 
model,” says Ilya Shmulevich, a professor at the 
Institute for Systems Biology in Seattle, Wash-
ington. The second challenge is to decide on a 
modelling approach. “It will depend on what 
kind of data you have available and how you 
will be using the model,” says Shmulevich.

 Several bioinformatic tools have been devel-
oped to model and represent networks. The 
most widely used ones are associated with 
Cytoscape (www.cytoscape.org), an open-
source program for visualizing networks and 
for integrating them networks with other types 
of data. Several Cytoscape plug-ins allow users 
to download and explore databases. 

Commercial packages with similar functions 
include MetaCore from GeneGO in St Joseph, 
Michigan; Pathway Analysis from Ingenu-
ity Systems in Redwood City, California; and 
Pathway Studio from Ariadne Genomics in 
Rockville, Maryland. These can access public 
sources of data as well as the company’s propri-
etary databases. “One of the unique features of 
Pathway Studio is the openness of our system 
and the ability to integrate many different kinds 
of data,” says David Denny, director of market-
ing and product management at Ariadne.

guilT by associaTion
One reason for developing networks is to help 
assign functions to proteins through guilt by 
association. But “a huge slice of the proteome 
consists of proteins that no one knows what 
they do or interact with”, says Benjamin Cravatt, 
a chemical physiologist at the Scripps Research 
Institute in San Diego, California.

For proteins not yet assigned to a portion 
of the human interaction network, Cravatt’s 
group developed a technology for assigning 
protein functions by exploiting an interac-
tion between enzymes and chemical reagents 
dubbed activity-based probes. These probes 
consist of a reactive group that binds the active 
sites of many members of an enzyme family, 
and a reporter tag that is used for the detec-
tion and identification of the probe-labelled 
enzymes8. 

Because these probes bind only to enzymes 
that are active, they can give insights into the 
enzymes’ functions. For example, if a probe 
binds to a set of enzymes in a cancer cell but not 
in a normal cell, it means that these enzymes 
become more active in the cancer cell and so 
may have a role in cell growth. The activity 
probes can also serve as assays for the discov-
ery of inhibitors for a particular enzyme, which 
may help researchers to understand the role 
of that enzyme. “You can develop an inhibitor 
for an enzyme before ever knowing what the 
actual substrate is,” says Cravatt.

This year, he developed another strategy that 
not only determines differences in enzyme 
activities in different cells, but also pinpoints 
where in the protein these differences occur, 
providing a more quantitative measure of the 
differences9. The activities of many families 
of enzymes are regulated or fine-tuned by 
cysteine modifications. By looking specifically 
for changes in cysteine modifications across 

the proteome, he found 
‘hyper-reactive’ cysteine 
residues in several pro-
teins of unknown func-
tion, which suggests that 
they probably have roles 
in signalling pathways. 

One challenge in 
defining protein–protein 
interaction networks is 
that interactions vary 
depending on the type 
of cell and the cellular 
environment. For exam-
ple, Wrana mapped the 
protein–protein interac-
tion network for TGF-β, 

a growth factor that regulates cell functions, 
and found that two proteins that pass on the 
signals from the factor inside the cell — Smad2 
and Smad4 — interact with one another only 
when the cells are stimulated with TGF-β. If 
the cells are not stimulated, these two proteins 
don’t come into contact10. 

Bennett, Harper and Steven Gygi, a cell biol-
ogist also at Harvard Medical School, devel-
oped a proteomics platform centred around a 
technology called multiplex absolute quanti-
fication (AQUA) to look at dynamic changes 
in protein interaction networks. AQUA uses 
synthetic peptides that contain stable isotopes 
as internal standards for the native peptides 
that are produced when proteins from a cell 

From a full network, researchers can zoom in on specific interactions that might be functionally relevant.

“One 
challenge is 
integrating 
heterogeneous 
data sets.”
ilya Shmulevich 
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lysate are digested. Using tandem 
MS, researchers can compare the lev-
els of native and synthetic peptides 
in a cell to obtain a measure of the 
amount of native proteins present. 
Synthetic peptides can also be pre-
pared with modifications, such as 
extra phosphate groups, to measure 
the number of post-translationally 
modified proteins. “We are pursuing 
the dynamics of protein networks by 
quantifying changes in the amount 
of proteins present in specific protein 
complexes,” says Harper. “Techniques 
such as AQUA provide an accurate 
and sensitive measure of how the 
stoichiometry of components within 
complexes that make up a network are altered 
in response to a stimulus.”

The team used the approach to describe 
the rearrangements that occur in the protein 
network of cullin-RING ubiquitin ligases, 
enzymes that regulate protein turnover, under 
various cellular conditions11.

develoPmenTs in diagnosTics
Changes in protein–protein interaction  
networks may provide information about the 
mechanisms of disease. Last year, Wrana applied 
the network approach to the diagnosis of 
breast cancer. He used microarrays to measure 
genome-wide protein expression in the tumours 
of people with breast cancer, and then overlaid 
the expression data on the network diagram of 
the human interactome.

Wrana had noted that ‘hub’ proteins, defined 
as those that interact with more than four  
others, can be grouped into two categories 
depending on whether they are expressed at 
the same time as the proteins with which they 
interact. When they looked at breast-cancer 
samples, Wrana and his colleagues found that 

certain hub proteins were in a different category 
in breast-cancer patients with a good prognosis 
than in those with a poor prognosis.

Thus, by overlaying the expression pattern 
of a cancer cell from an individual patient onto 
the human interactome network, Wrana could 
predict a patient’s prognosis. “We found that 
the detection of global changes in network 
organization is more predictive of outcome 
than is gene expression alone,” says Wrana. 
“We have now applied this method to other 
tumour models and obtained similar results.” 

KAYAK (kinase activity assay for protein 
profiling) is another approach to developing 
diagnostic tools for cancer on the basis of the 
functional consequences of the interaction 
between a protein, in this case a kinase, and 
its substrate. In this method, up to 90 peptide 
substrates for kinases are used to simulta-
neously measure the addition of phosphate 
groups to proteins in a cell lysate — in essence 
providing a ‘phosphorylation signature’ for 
that particular cell. “The readout is so sensi-
tive and so quantitative that even small differ-
ences are teased out,” says Gygi, who helped to 

develop the method12.
According to Gygi, the biggest appli-

cation of KAYAK might be in tumour 
classification. “Biopsies or excised tis-
sues can be profiled for kinase activities 
with pinpoint accuracy. These patterns 
could contribute towards personalized 
drug treatments based on dysregulated 
kinase pathways,” he says. 

The combination of different types 
of data and technologies should con-
tinue to fill in the empty spaces of the 
current human inter actome map. The 
picture may never be complete, but it 
will continue to provide insights into 
cellular mechanisms of health and 
disease. “I think that the network 

we have is dense enough for us to start doing 
studies to classify disease states,” says Wrana. 
“As the networks become better and coverage 
improves, the accuracy of diagnosis will also 
improve.” ■

Laura Bonetta is a freelance science writer 
based in Garrett Park, Maryland.
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Web tools such as GeneMANIA integrate data on a protein or gene. 
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in november, pacific Biosciences of Menlo 
park, California, commercially released 
its third-generation Dna-sequencing 
platform, based on its single-molecule, 
real-time (SMrt) technology. a single Dna 
polymerase bound to a Dna template is 
attached to a tiny chamber illuminated 
by lasers, and nucleotides labelled with 
coloured fluorophores are introduced to 
it. as the polymerase incorporates them, 
each base is held for a few microseconds, 
while the fluorophore emits coloured light 
corresponding to the base identity. SMrt 
technology could also be used to analyse 
biomolecules other than Dna, and could 
become a common tool for detecting protein 
interactions, with some unique features. “this 

technology can detect relatively 
weak interactions,” says Jonas 
Korlach, a scientific fellow at 
pacific Biosciences, adding that 
it could pick out interactions 
that happen so quickly that they 
can’t be identified by current 
methods. 

as a step towards such applications, 
Joseph puglisi, a structural biologist at 
Stanford University School of Medicine in 
California, and his group, with scientists at 
pacific Biosciences, observed transfer rnas 
binding to single ribosomes in real time13. in 
an unpublished follow-up, puglisi’s group has 
used SMrt technology to watch interactions 
between transfer rnas, ribosomes and 

protein factors to determine how the 
translation machinery synthesizes proteins. 
“We have just seen the tip of the iceberg in 
terms of applications,” says Korlach. L.b.

real-time analysis

Future SMRT systems could reveal interactions.
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