Jupiter, if thunderstorms on those planets build up the right amount of charge to trigger the flashes, say Yoav Yair of the Open University of Israel in Ra'anana and his colleagues. Neither Mars nor Saturn's moon Titan are likely to have sprites, though both have the right conditions for lightning.

Japan's Planet-C mission to Venus, due for launch next year, might be able to confirm the existence of the hypothetical sprites.

BIOLOGY

Turning tail

Biol. Lett. doi:10.1098/rsbl.2009.0577 (2009) When threatened, geckos such as *Coleonyx brevis* (pictured) can jettison their tails in the

hope that predators will be too distracted by the writhing appendage to notice the meal that is scurrying away.

Although many have observed the gecko's great escape, the behaviour of the newly autonomous decoys they leave behind is less well known.

Timothy Higham from Clemson

University in South Carolina and Anthony Russell at the University of Calgary in Alberta, Canada, used high-speed video cameras and implanted electrodes to study the tail of the leopard gecko (*Eublepharis macularius*) immediately after shedding. In addition to rhythmic swinging movements, which were probably controlled by motor circuits in the spinal cord, the tail also performed complex acrobatics such as flips and lunges.

MICROBIOLOGY Sussing Shewanella

Proc. Natl Acad. Sci. USA doi:10.1073/ pnas.0902000106 (2009) For bacteria, which have notoriously twisted family trees, defining species boundaries requires close knowledge of both genetic and expressed characteristics.

A team led by Kostas Konstantinidis of the Georgia Institute of Technology in Atlanta and James Tiedje at Michigan State University in East Lansing investigated ten strains of bacteria from the genus *Shewanella*, a group with varied, often ecologically important, metabolic abilities. Genome and protein-expression data were already available for the strains.

By comparing these data sets, the team was able to link genetic factors to ecological role in more detail than before. Also, despite identical culture conditions, protein expression varied more than genome sequence in some cases, so gene regulation could be important for describing species.

MATERIALS SCIENCE Hard-headed theories

Phys. Rev. B **80**, 060103 (2009) Physicists recently discovered that materials known as transition-metal diborides rival the hardness of diamonds in one direction but are relatively soft in another. Such materials

> have the potential to revolutionize industrial processes — if scientists can work out what makes them so tough in certain orientations.

D. HEUCLIN/NHP/

Theorists had thought that the strength came from strong vertical bonds within the crystal, similar to the ridges in a sheet of corrugated cardboard. But

Antonín Šimůnek of the Academy of Sciences of the Czech Republic in Prague thinks it might be just the opposite. He proposes a model in which strong horizontal bonds between surface atoms act as a tough shell that can resist denting by a sharp tip. The theory could lead to development of new super-hard materials.

NEUROBIOLOGY Teamwork rewarded

Biol. Lett. doi:10.1098/rsbl.2009.0670 (2009) Coordinated social activity, such as dancing or team sports, stimulates the brain to release high levels of mood-elevating endorphins that are believed to have a role in social bonding. But how can this be distinguished from the normal release of endorphins during exercise?

Emma Cohen of the University of Oxford, UK, and her colleagues looked at rowers training alone or with teammates on stationary rowing machines. Because measuring endorphins directly would require a spinal tap, the researchers instead used pain tolerance to gauge endorphin release after workouts. They found that rowers had greater increases in pain threshold after operating as a crew than when going solo.

JOURNAL CLUB

Rusty Feagin Texas A&M University, College Station, Texas

A coastal ecologist sees the hidden effects of hurricanes.

As part of my job, I often drive around looking at the impacts of hurricanes in coastal areas. The one thing that stands out from such trips is that the devastation always looks the same, regardless of where I am — the boats perched on the streets, the newly house-less stilts near the beach, the furniture on a lawn covered in mould.

I realized though, after reading a recent article by Hongcheng Zeng of Tulane University in New Orleans, Louisiana and his colleagues (H. Zeng *et al. Proc. Natl Acad. Sci. USA* **106**, 7888-7892; 2009), that I need to be concerned with the damage that I cannot see — the bleeding of carbon from the landscape, and the loss of future carbon stores.

Using field, satellite and modelled data, Zeng and his colleagues detail how damaging winds over the past 150 years have greatly reduced forest biomass through tree mortality, subsequent wood decay and carbon release. They estimate that between 1980 and 1990. 9-18% of the amount of carbon stored yearly by US forests was lost due to destruction caused by tropical cyclones. The carbon dioxide loss is cumulative because once a tree is lost, it cannot sequester CO₂ in the future. Thus, an extreme event such as Hurricane Katrina in 2005 or the Indian Ocean tsunami in 2004 could radically reduce carbon sequestration in the areas affected for several decades.

These findings force me to consider more than just the visible effects of hurricanes; I realize that tree loss is in effect altering the global carbon cycle. This paper also makes me wonder about the cumulative impact of cyclones on CO_2 in other ecosystems, such as grasslands that have been damaged by salt-water inundation, or even possible forest growth due to storm-induced rainfall inland.

Discuss this paper at http://blogs. nature.com/nature/journalclub

