Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spatial sampling of crystal electrons by in-flight annihilation of fast positrons

Abstract

Energetic, positively charged particles travelling along a low-index crystal direction undergo many highly correlated, small-angle scattering events; the effect of these interactions is to guide or ‘channel’ (refs 1,2,3,4,5,6,7,8) the particles through the lattice. Channelling effectively focuses positive particles into the interstitial regions of the crystal: nuclear collisional processes such as Rutherford backscattering are suppressed, while the number of interactions with valence electrons increases. The interaction of channelled positrons with electrons produces annihilation radiation that can in principle9,10,11,12 serve as a quantitative, spatially selective probe of electronic charge and spin densities within the crystal: in the interstitial regions, two-photon annihilation is enhanced relative to single-photon annihilation, because the latter process requires a nuclear recoil to conserve momentum. Here we report observations of single- and two-photon annihilation from channelled positrons, using a monoenergetic beam flux of 105 particles per second. Comparison of these two annihilation modes demonstrates the ability of channelled positrons to selectively sample valence electrons in a crystal. Useful practical implementation of the technique will require the development of more intense positron beams with fluxes approaching 107 particles per second.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up.
Figure 2: HPGe energy spectra.
Figure 3: Normalized angular yield curves.

Similar content being viewed by others

References

  1. Lindhard,J. Motion of swift charged particles, as influenced by strings of atoms in crystals. Phys. Lett. 12, 126–128 (1964).

    Article  ADS  CAS  Google Scholar 

  2. Lindhard,J. Influence of crystal lattice on motion of energetic charged particles. K. Danske Vidensk. Selsk. Mat.-fys. Medd. 34(14), 1–64 (1965).

    Google Scholar 

  3. Howie,A. Diffraction channeling of fast electrons and positrons in crystals. Phil. Mag. 4, 223–237 (1966).

    Article  ADS  Google Scholar 

  4. Uggerhøj,E. Orientation dependence of the emission of positrons and electrons from 64Cu embedded in single crystals. Phys. Lett. 22, 382–383 (1966).

    Article  ADS  Google Scholar 

  5. Uggerhøj,E. & Andersen,J. U. Influence of lattice structure on motion of positrons and electrons through single crystals. Can. J. Phys. 46, 543–550 (1968).

    Article  ADS  Google Scholar 

  6. Andersen,J. U., Augustyniak,W. M. & Uggerhøj,E. Channeling of positrons. Phys. Rev. B 3, 705–711 (1971).

    Article  ADS  Google Scholar 

  7. Andersen,J. U., Andersen,S. K. & Augustyniak,W. M. Channeling of electrons and positrons. K. Danske Vidensk. Selsk. Mat.-fys. Medd. 39(10), 1–58 (1977).

    Google Scholar 

  8. Schultz,P. J., Logan,L. R., Jackman,T. E. & Davies,J. A. Channeling effects on positron transmission through thin crystals. Phys. Rev. B 38, 6369–6379 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Haakenaasen,R. et al. Quantum channeling effects for 1 MeV positrons. Phys. Rev. Lett. 75, 1650–1653 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Hau,L. V. et al. On the role of classical and quantum notions in channeling and the development of fast positrons as a solid state probe of valence electron and spin densities. Nucl. Instrum. Methods B 119, 30–41 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Hau,L. V., Hunt,A. W., Golovchenko,J. A., Haakenaasen,R. & Lynn,K. G. in Proc. 11th Int. Conf. Positron Annihilation (eds Jean, Y. C. Eldrup, M., Schrader, D. M. & West, R. N. ) 119–123 (Trans Tech, Uetikon, Zuerich, Switzerland, 1997).

    Google Scholar 

  12. Haakenaasen,R. et al. in Proc. 11th Int. Conf. Positron Annihilation (eds Jean, Y. C. Eldrup, M., Schrader, D. M. & West, R. N. ) 257-259 (Trans Tech, Uetikon, Zuerich, Switzerland, 1997).

    Google Scholar 

  13. Selim,F. A. Penetration of Energetic Positrons through Crystalline and Noncrystalline Media. Thesis, Alexandria Univ. (1999).

    Google Scholar 

  14. Palathingal,J. C., Asoka-Kumar,P., Lynn,K. G. & Wu,X. Y. Nuclear-charge and positron-energy dependence of the single-quantum annihilation of positrons. Phys. Rev. A 51, 2122–2130 (1995).

    Article  ADS  CAS  Google Scholar 

  15. Andersen,J. U., Bonderup,E., Lægsgaard,E., Marsh,B. B. & Sørensen,A. H. Axial channeling radiation from MeV electrons. Nucl. Instrum. Methods 194, 209–224 (1982).

    Article  ADS  CAS  Google Scholar 

  16. Rajagopal,A. K. in Advances in Chemical Physics (eds Prigogine, I. & Rice, S. A. ) Vol. 41 (John and Sons, New York, 1980).

    Google Scholar 

  17. Dawson,B. The covalent bond in silicon. Proc. R. Soc. Lond. A 298, 379–394 (1967).

    Article  ADS  CAS  Google Scholar 

  18. Aldred,P. J. E. & Hart,M. The electron distribution in silicon. Proc. R. Soc. Lond. A 332, 223–238 (1973).

    Article  ADS  CAS  Google Scholar 

  19. Zuo,J. M., Kim,M., O'Keeffe,M. & Spence,J. Direct observation of d-orbital holes and Cu-Cu bonding in Cu2O. Nature 401, 49–52 (1999).

    Article  ADS  CAS  Google Scholar 

  20. Zuo,J. M., O'Keeffe,M., Rez,P. & Spence,J. C. H. Charge density of MgO: Implications of precise new measurements for theory. Phys. Rev. Lett. 78, 4777–4780 (1997).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Chevalier, W. Gibson, R. A. Levesque, J. U. Andersen, M. Weinert and J. C. Palathingal for contributions to this research. This work was supported by the National Science Foundation, the Norwegian Research Council and the Department of Energy through Lawrence Livermore National Laboratory.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunt, A., Cassidy, D., Selim, F. et al. Spatial sampling of crystal electrons by in-flight annihilation of fast positrons. Nature 402, 157–160 (1999). https://doi.org/10.1038/45990

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/45990

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing