Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Vision

Dichromatism in macaque monkeys

A Correction to this article was published on 16 December 1999

Abstract

Old World primates have trichromatic vision because they have three types of cone photoreceptor, each of which is maximally sensitive to short, middle or long wavelengths of light1. Although a proportion of human males (about 8% of caucasians, for example) have X-chromosome-linked colour-vision abnormalities2, no non-human Old World primates have been found to be colour-vision defective3,4. We have tested 3,153 macaque monkeys but found only three dichromats, a frequency that is much lower than in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Physical maps of the L and the M genes.
Figure 2: Absorbance spectra of L, M and hybrid (R4G5) pigments.

Similar content being viewed by others

References

  1. Tovée, M. J. Trends Neurosci. 17, 30–37 (1994).

    Article  Google Scholar 

  2. Fletcher, R. & Voke, J. Defective Colour Vision: Fundamentals, Diagnosis and Management (Hilger, Bristol, 1985).

  3. Jacobs, G. H. & Harwerth, R. S. Am. J. Primatol. 18, 35–44 (1989).

    Article  Google Scholar 

  4. Jacobs, G. H. & Deegan, J. F. Vis. Neurosci. 14, 921–928 (1997).

    Article  CAS  Google Scholar 

  5. Nathans, J., Thomas, D. & Hogness, D. S. Science 232, 193–202 (1986).

    Article  ADS  CAS  Google Scholar 

  6. Vollrath, D., Nathans, J. & Davis, R. W. Science 240, 1669–1672 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Deeb, S. S. et al. Am. J. Hum. Genet. 51, 687–700 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Dulai, K. S. et al. Vision Res. 34, 2483–2491 (1994).

    Article  CAS  Google Scholar 

  9. Merbs, S. L. & Nathans, J. Science 258, 464–466 (1992).

    Article  ADS  CAS  Google Scholar 

  10. Neitz, J., Neitz, M. & Kainz, P. N. Science 274, 801–804 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Drummond-Borg, N., Deeb, S. S. & Motulsky, A. G. Proc. Natl Acad. Sci. USA 86, 983–987 (1989).

    Article  ADS  CAS  Google Scholar 

  12. Jorgense, A. L., Deeb, S. S. & Motulsky, A. G. Proc. Natl Acad. Sci. USA 87, 6512–6516 (1990).

    Article  ADS  Google Scholar 

  13. Kojima, D. et al. Biochemistry 35, 2625–2629 (1996).

    Article  CAS  Google Scholar 

  14. Bowmaker, J. K., Dartnall, H. J. & Mollon, J. D. J. Physiol. (Lond.) 298, 131–148 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuo Yamamori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onishi, A., Koike, S., Ida, M. et al. Dichromatism in macaque monkeys. Nature 402, 139–140 (1999). https://doi.org/10.1038/45966

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/45966

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing