Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The novel Cer-like protein Caronte mediates the establishment of embryonic left–right asymmetry

Abstract

In the chick embryo, left–right asymmetric patterns of gene expression in the lateral plate mesoderm are initiated by signals located in and around Hensen's node. Here we show that Caronte (Car), a secreted protein encoded by a member of the Cerberus/Dan gene family, mediates the Sonic hedgehog (Shh)-dependent induction of left-specific genes in the lateral plate mesoderm. Car is induced by Shh and repressed by fibroblast growth factor-8 (FGF-8). Car activates the expression of Nodal by antagonizing a repressive activity of bone morphogenic proteins (BMPs). Our results define a complex network of antagonistic molecular interactions between Activin, FGF-8, Lefty-1, Nodal, BMPs and Car that cooperate to control left–right asymmetry in the chick embryo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of Car, Nodal and Lefty-1 during chick gastrulation.
Figure 2: Car acts downstream of Shh and upstream of Nodal and directs heart looping in the chick embryo.
Figure 3: Antagonism of BMPs by Car regulates Nodal expression.
Figure 4: Interaction of Car with BMPs: biochemical evidence and structural model.
Figure 5: FGF-8 and Activin regulate Car expression.
Figure 6: Interaction between Lefty-1 and Car during the establishment of left–right asymmetry.
Figure 7: cNKX3.2 is a novel target of the left–right signalling pathway.
Figure 8: Role of Car in the genetic cascade that determines left–right development.

Similar content being viewed by others

References

  1. Levin,M., Johnson,R. L., Stern,C. D., Kuehn,M. & Tabin,C. A molecular pathway determining left-right asymmetry in chick embryogenesis. Cell 82, 803–814 (1995).

    Article  CAS  Google Scholar 

  2. Harvey,R. P. Links in the left/right axial pathway. Cell 94, 273–276 (1998).

    Article  CAS  Google Scholar 

  3. Ramsdell,A. F. & Yost,H. J. Molecular mechanisms of vertebrate left-right development. Trends Genet. 14, 459–465 (1998).

    Article  CAS  Google Scholar 

  4. King,T. & Brown,N. A. Embryonic asymmetry: the left side gets all the best genes. Curr. Biol. 9, R18–R22 (1999).

    Article  CAS  Google Scholar 

  5. Collignon,J., Varlet,I. & Robertson,E. J. Relationship between asymmetric nodal expression and the direction of embryonic turning. Nature 381, 155–158 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Lowe,L. A. et al. Conserved left-right asymmetry of nodal expression and alterations in murine situs inversus. Nature 381, 158–161 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Supp,D. M., Witte,D. P., Potter,S. S. & Brueckner,M. Mutation of an axonemal dynein affects left-right asymmetry in inversus viscerum mice. Nature 389, 963–966 (1997).

    Article  ADS  CAS  Google Scholar 

  8. Hyatt,B. A., Lohr,J. L. & Yost,H. J. Initiation of vertebrate left-right axis formation by maternal vg1. Nature 384, 62–65 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Lohr,J. L., Danos,M. C. & Yost,H. J. Left-right asymmetry of a nodal-related gene is regulated by dorsoanterior midline structures during Xenopus development. Development 124, 1465–1472 (1997).

    CAS  PubMed  Google Scholar 

  10. Pagán-Westphal,S. M. & Tabin,C. J. The transfer of left-right positional information during chick embryogenesis. Cell 93, 25–35 (1998).

    Article  Google Scholar 

  11. Levin,M., Roberts,D. J., Holmes,L. B. & Tabin,C. Laterality defects in conjoined twins. Nature 384, 321 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Meno,C. et al. Lefty-1 is required for left-right determination as a regulator of Lefty-2 and Nodal. Cell 94, 287–297 (1998).

    Article  CAS  Google Scholar 

  13. Yoshioka,H. et al. Pitx2, a bicoid-type homeobox gene, is involved in a lefty-signaling pathway in determination of left-right asymmetry. Cell 94, 299–305 (1998).

    Article  CAS  Google Scholar 

  14. Boettger,T., Wittler, L. & Kessel,M. FGF8 functions in the specification of the right body side of the chick. Curr. Biol. 9, 277–280 (1999).

    Article  CAS  Google Scholar 

  15. Isaac,A., Sargent,M. G. & Cooke,J. Control of vertebrate left-right asymmetry by a Snail-related zinc finger gene. Science 275, 1301–1304 (1997).

    Article  CAS  Google Scholar 

  16. Ryan,A. K. et al. Pitx2 determines left-right asymmetry of internal organs in vertebrates. Nature 394, 545–551 (1998).

    Article  ADS  CAS  Google Scholar 

  17. Campione,M. et al. The homeobox gene Pitx2: mediator of asymmetric left-right signaling in vertebrate heart and gut looping. Development 126, 1225–1234 (1999).

    CAS  PubMed  Google Scholar 

  18. Bouwmeester,T., Kim,S. H., Sasai,Y., Lu,B. & De Robertis,E. M. Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann's organizer. Nature 382, 595–601 (1996).

    Article  ADS  CAS  Google Scholar 

  19. Hsu,D. R., Economides,A. N., Wang,X., Eimon,P. M. & Harland, R. M. The Xenopus dorsalizing factor Gremlin identifies a novel family of secreted proteins that antagonize BMP activities. Mol. Cell 1, 673–683 (1998).

    Article  CAS  Google Scholar 

  20. Ozaki,T. & Sakiyama,S. Molecular cloning and characterization of a cDNA showing negative regulation in v-src-transformed 3Y1 rat fibroblasts. Proc. Natl Acad. Sci. USA 90, 2593–2597 (1993).

    Article  ADS  CAS  Google Scholar 

  21. Stanley,E. et al. Dan is a secreted glycoprotein related to Xenopus cerebus. Mech. Dev. 77, 173–184.

  22. Belo,J. A. Cerberus-like is a secreted factor with neuralizing activity expressed in the anterior primitive endoderm of the mouse gastrula. Mech. Dev. 68, 45–57 (1997).

    Article  CAS  Google Scholar 

  23. Thomas,P., Brickman,J. M., Popperl,H., Krumlauf, R. & Beddington,R. S. Axis duplication and anterior identity in the mouse embryo. Cold Spring Harb. Symp. Quant. Biol. 62, 115–125 (1997).

    Article  CAS  Google Scholar 

  24. Biben,C. et al. Murine cerberus homologue mCer-1: a candidate anterior patterning molecule. Dev. Biol. 194, 135–151 (1998).

    Article  CAS  Google Scholar 

  25. Topol,L. Z. et al. Identification of drm, a novel gene whose expression is suppressed in transformed cells and which can inhibit growth of normal but not transformed cells in culture. Mol. Cell. Biol. 17, 4801–4810 (1997).

    Article  CAS  Google Scholar 

  26. Pearce,J. J., Penny,G. & Rossant,J. A mouse Cerberus/Dan-related gene family. Dev. Biol. 209, 98–110 (1999).

    Article  CAS  Google Scholar 

  27. Yokouchi,Y., Vogan,K. J., Pearse II, R. V. & Tabin,C. J. Antagonistic signaling by Caronte, a novel Cerberus-related gene, mediates the establishment of broad domains of left-right asymmetric gene expression. Cell (in the press).

  28. Zhu,L. et al. Cerberus regulates left/right asymmetry of the embryonic head and heart. Curr. Biol. 9, 931–938 (1999).

    Article  CAS  Google Scholar 

  29. Thisse,C. & Thisse,B. Antivin, a novel and divergent member of the TGFβ superfamily, negatively regulates mesoderm induction. Development 126, 229–240 (1999).

    CAS  PubMed  Google Scholar 

  30. Meno,C. et al. Two closely-related left-right asymmetrically expressed genes, lefty-1 and lefty-2: their distinct expression domains, chromosomal linkage and direct neuralizing activity in Xenopus embryos. Genes Cells 2, 513–524 (1997).

    Article  CAS  Google Scholar 

  31. Oulad-Abdelghani,M. et al. Stra3/lefty, a retinoic acid-inducible novel member of the transforming growth factor-β superfamily. Int. J. Dev. Biol. 42, 22–32 (1998).

    Google Scholar 

  32. Schneider,A. et al. the homeobox gene NKX3.2 is a target of left–right signalling and is expressed on opposite sides in chick and mouse embryos. Curr. Biol. 9, 911–914 (1999).

    Article  CAS  Google Scholar 

  33. Piccolo,S. et al. The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature 397, 707–710 (1999).

    Article  ADS  CAS  Google Scholar 

  34. Watanabe,Y. & Le Douarin,N. M. A role for BMP-4 in the development of subcutaneous cartilage. Mech. Dev. 57, 69–78 (1996).

    Article  CAS  Google Scholar 

  35. Schultheiss,T. M., Burch,J. B. & Lassar,A. B. A role for bone morphogenetic proteins in the induction of cardiac myogenesis. Genes Dev. 11, 451–462 (1997).

    Article  CAS  Google Scholar 

  36. Streit,A. et al. Chordin regulates primitive streak development and the stability of induced neural cells, but is not sufficient for neural induction in the chick embryo. Development 125, 507–519 (1998).

    CAS  PubMed  Google Scholar 

  37. Zimmerman,L. B., De Jesus-Escobar,J. M. & Harland, R. M. The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86, 599–606 (1996).

    Article  CAS  Google Scholar 

  38. Capdevila,J. & Johnson, R. L. Endogenous and ectopic expression of noggin suggests a conserved mechanism for regulation of BMP function during limb and somite patterning. Dev. Biol. 197, 205–217 (1998).

    Article  CAS  Google Scholar 

  39. Pizette,S. & Niswander, L. BMPs negatively regulate structure and function of the limb apical ectodermal ridge. Development 126, 883–894 (1999).

    CAS  PubMed  Google Scholar 

  40. Thompson,J. D., Gibson,T. J., Plewniak,F., Jeanmougin,F. & Higgins,D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882 (1997).

    Article  CAS  Google Scholar 

  41. Mohammadi,M. et al. Structures of the tyrosine kinase domain of fibroblast growth factor receptor in complex with inhibitors. Science 276, 955–960 (1997).

    Article  CAS  Google Scholar 

  42. Izpisua-Belmonte,J. C., De Robertis, E. M., Storey, K. G. & Stern, C. D. The homeobox gene goosecoid and the origin of organizer cells in the early chick blastoderm. Cell 74, 645–659 (1993).

    Article  CAS  Google Scholar 

  43. Tribioli,C., Frasch,M. & Lufkin,T. Bapx1: an evolutionary conserved homologue of the Drosophila bagpipe homeobox gene is expressed in splanchnic mesoderm and the embryonic skeleton. Mech. Dev. 65, 145–162 (1997).

    Article  CAS  Google Scholar 

  44. Olson,E. N. & Srivastava,D. Molecular pathways controlling heart development. Science 272, 671–676 (1996).

    Article  ADS  CAS  Google Scholar 

  45. Harvey,R. P. NK-2 homeobox genes and heart development. Dev. Biol. 178, 203–216 (1996).

    Article  CAS  Google Scholar 

  46. Meyers,E. N. & Martin, G. R. Differences in left-right axis pathways in mouse and chick: functions of FGF8 and SHH. Science 285, 403–406 (1999).

    Article  CAS  Google Scholar 

  47. Izraeli,S. et al. The SIL gene is required for mouse embryonic axial development and left-right specification. Nature 399, 691–694 (1999).

    Article  ADS  CAS  Google Scholar 

  48. Tsukui,T. et al. Multiple left-right asymmetry defects in Shh-/- mutant mice unveil a convergence of the Shh and Retinoic Acid pathways in the control of Lefty-1. Proc. Natl Acad. Sci. USA (in the press).

  49. New,D. A. T. A new technique for the cultivation of the chick embryo in vitro. J. Embryol. Exp. Morphol. 3, 326–331 (1955).

    Google Scholar 

  50. Merino, et al. Expression and function of Gdf-5 during digit skeletogenesis in the embryonic chick leg bud. Dev. Biol. 206, 33–45 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Magallón for technical help; T. Brand, R. Evans, H. Hamada, C. Kintner, G. Rosenfeld, C. Stern, C. Tabin and members of P. E. Wright's group for discussions and for sharing unpublished observations; W. Vale and S. Choe for reagents; J. P. Fandl (for providing human Cerberus) and X. Wang (for technical help), both at Regeneron; J. Hurlé for scanning images; C. Parada for suggesting the name Caronte; and L. Hooks for help in preparing the manuscript. J.C. was supported by a Hoffmann Foundation Fellowship; J.P. was supported by a long-term EMBO Fellowship. This work was supported by grants from the G. Harold and Leila Y. Mathers Charitable Foundation and the NIH to J.C.I.B., who is a Pew Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos Izpisúa Belmonte.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esteban, C., Capdevila, J., Economides, A. et al. The novel Cer-like protein Caronte mediates the establishment of embryonic left–right asymmetry. Nature 401, 243–251 (1999). https://doi.org/10.1038/45738

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/45738

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing