Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Variants in circadian genes and prostate cancer risk: a population-based study in China

Abstract

Circadian genes influence a variety of biological processes that are important in prostate tumorigenesis including metabolism. To determine if variants in circadian genes alter prostate cancer risk, we genotyped five variants in five circadian genes in a population-based case–control study conducted in China (187 cases and 242 controls). These variants included CRY2 rs1401417:G>C, CSNK1E rs1005473:A>C, NPAS2 rs2305160:G>A, PER1 rs2585405:G>C and PER3 54-bp repeat length variant. Men with the cryptochrome 2 (CRY2)-variant C allele had a significant 1.7-fold increased prostate cancer risk (95% confidence interval (CI), 1.1–2.7) relative to those with the GG genotype. This risk increased to 4.1-fold (95% CI, 2.2–8.0) in men who also had greater insulin resistance (IR) as compared to men with the GG genotype and less IR. In contrast, among men with less IR, the NPAS2-variant A allele was associated with decreased prostate cancer risk (odds ratio=0.5, 95% CI, 0.3–1.0) as compared to the GG genotype. Our findings, although in need of confirmation, suggest that variations in circadian genes may alter prostate cancer risk and some biological processes may modify this effect.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Rutter J, Reick M, Wu LC, McKnight SL . Regulation of clock and NPAS2 DNA binding by the Redox state of NAD cofactors. Science 2001; 293: 510–514.

    Article  CAS  PubMed  Google Scholar 

  2. Rudic RD, McNamara P, Curtis AM, Boston RC, Panda S, Hogenesch JB et al. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol 2004; 2: e377.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E et al. Obesity and metabolic syndrome in circadian clock mutant mice. Science 2005; 308: 1043–1045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zvonic S, Floyd ZE, Mynatt RL, Gimble JM . Circadian rhythms and the regulation of metabolic tissue function and energy homeostasis. Obesity 2007; 15: 539–543.

    Article  CAS  PubMed  Google Scholar 

  5. Lejeune-Lenain C, Van Cauter E, Desir D, Beyloos M, Franckson JR . Control of circadian and episodic variations of adrenal androgens secretion in man. J Endocrinol Invest 1987; 10: 267–276.

    Article  CAS  PubMed  Google Scholar 

  6. Kubo T, Ozasa K, Mikami K, Wakai K, Fujino Y, Watanabe Y et al. Prospective cohort study of the risk of prostate cancer among rotating-shift workers: findings from the Japan collaborative cohort study. Am J Epidemiol 2006; 164: 549–555.

    Article  PubMed  Google Scholar 

  7. Conlon M, Lightfoot N, Kreiger N . Rotating shift work and risk of prostate cancer. Epidemiology 2007; 18: 182–183.

    Article  PubMed  Google Scholar 

  8. Band PR, Le ND, Fang R, Deschamps M, Coldman AJ, Gallagher RP et al. Cohort study of air Canada pilots: mortality, cancer incidence, and leukemia risk. Am J Epidemiol 1996; 143: 137–143.

    Article  CAS  PubMed  Google Scholar 

  9. Irvine D, Davies DM . British airways flightdeck mortality study, 1950–1992. Aviat Space Environ Med 1999; 70: 548–555.

    CAS  PubMed  Google Scholar 

  10. Pukkala E, Aspholm R, Auvinen A, Eliasch H, Gundestrup M, Haldorsen T et al. Cancer incidence among 10,211 airline pilots: a Nordic study. Aviat Space Environ Med 2003; 74: 699–706.

    PubMed  Google Scholar 

  11. Fu L, Lee CC . The circadian clock: pacemaker and tumour suppressor. Nat Rev Cancer 2003; 3: 350–361.

    Article  CAS  PubMed  Google Scholar 

  12. Zhu Y, Brown HN, Zhang Y, Stevens RG, Zheng T . Period3 structural variation: a circadian biomarker associated with breast cancer in young women. Cancer Epidemiol Biomarkers Prev 2005; 14: 268–270.

    CAS  PubMed  Google Scholar 

  13. Zhu Y, Stevens R, Leaderer D, Hoffman A, Holford T, Zhang Y et al. Non-synonymous polymorphisms in the circadian gene NPAS2 and breast cancer risk. Breast Cancer Res Treat (e-pub ahead of print).

  14. Zhu Y, Leaderer D, Guss C, Brown HN, Zhang Y, Boyle P et al. Ala394Thr polymorphism in the clock gene NPAS2: a circadian modifier for the risk of non-Hodgkin's lymphoma. Int J Cancer 2007; 120: 432–435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhu Y, Zheng T, Stevens RG, Zhang Y, Boyle P . Does ‘clock’ matter in prostate cancer? Cancer Epidemiol Biomarkers Prev 2006; 15: 3–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hsing AW, Deng J, Sesterhenn IA, Mostofi FK, Stanczyk FZ, Benichou J et al. Body size and prostate cancer: a population-based case–control study in China. Cancer Epidemiol Biomarkers Prev 2000; 9: 1335–1341.

    CAS  PubMed  Google Scholar 

  17. Hsing AW, Chua Jr S, Gao Y-T, Gentzschein E, Chang L, Deng J et al. Prostate cancer risk and serum levels of insulin and leptin: a population-based study. J Natl Cancer Inst 2001; 93: 783–789.

    Article  CAS  PubMed  Google Scholar 

  18. Hsing AW, Gao YT, Chua Jr S, Deng J, Stanczyk FZ . Insulin resistance and prostate cancer risk. J Natl Cancer Inst 2003; 95: 67–71.

    Article  CAS  PubMed  Google Scholar 

  19. Hsing AW, Chokkalingam AP . Prostate cancer epidemiology. Front Biosci 2006; 11: 1388–1413.

    Article  CAS  PubMed  Google Scholar 

  20. Hsing AW, Gao YT, Wu G, Wang X, Deng J, Chen YL et al. Polymorphic CAG and GGN repeat lengths in the androgen receptor gene and prostate cancer risk: a population-based case–control study in China. Cancer Res 2000; 60: 5111–5116.

    CAS  PubMed  Google Scholar 

  21. Hsing AW, Chen C, Chokkalingam AP, Gao Y-T, Dightman DA, Nguyen HT et al. Polymorphic markers in the SRD5A2 gene and prostate cancer risk: a population-based case–control study. Cancer Epidemiol BiomarkersPrev 2001; 10: 1077–1082.

    CAS  Google Scholar 

  22. Ebisawa T, Uchiyama M, Kajimura N, Mishima K, Kamei Y, Katoh M et al. Association of structural polymorphisms in the human period3 gene with delayed sleep phase syndrome. EMBO Rep 2001; 2: 342–346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Archer SN, Robilliard DL, Skene DJ, Smits M, Williams A, Arendt J et al. A length polymorphism in the circadian clock gene Per3 is linked to delayed sleep phase syndrome and extreme diurnal preference. Sleep 2003; 26: 413–415.

    Article  PubMed  Google Scholar 

  24. Fu L, Pelicano H, Liu J, Huang P, Lee CC . The circadian gene period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 2002; 111: 41–50.

    Article  CAS  PubMed  Google Scholar 

  25. Amundadottir LT, Sulem P, Gudmundsson J, Helgason A, Baker A, Agnarsson BA et al. A common variant associated with prostate cancer in European and African populations. Nat Genet 2006; 38: 652–658.

    Article  CAS  PubMed  Google Scholar 

  26. Gudmundsson J, Sulem P, Manolescu A, Amundadottir LT, Gudbjartsson D, Helgason A et al. Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat Genet 2007; 39: 631–637.

    Article  CAS  PubMed  Google Scholar 

  27. Haiman CA, Patterson N, Freedman ML, Myers SR, Pike MC, Waliszewska A et al. Multiple regions within 8q24 independently affect risk for prostate cancer. Nat Genet 2007; 39: 638–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yeager M, Orr N, Hayes RB, Jacobs KB, Kraft P, Wacholder S et al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet 2007; 39: 645–649.

    Article  CAS  PubMed  Google Scholar 

  29. Core Genotyping Facility, Office of Cancer Genomics, Division of Cancer Epidemiology and Genetics NCI, NIH. The cancer genetic markers of susceptibility project. http://cgems.cancer.gov/. Date accessed: February 5, 2007.

  30. Hammarsten J, Hogstedt B . Hyperinsulinaemia: a prospective risk factor for lethal clinical prostate cancer. Eur J Cancer 2005; 41: 2887–2895.

    Article  CAS  PubMed  Google Scholar 

  31. Gong Z, Neuhouser ML, Goodman PJ, Albanes D, Chi C, Hsing AW et al. Obesity, diabetes, and risk of prostate cancer: results from the prostate cancer prevention trial. Cancer Epidemiol Biomarkers Prev 2006; 15: 1977–1983.

    Article  PubMed  Google Scholar 

  32. Miller BH, Olson SL, Turek FW, Levine JE, Horton TH, Takahashi JS . Circadian clock mutation disrupts estrous cyclicity and maintenance of pregnancy. Curr Biol 2004; 14: 1367–1373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Luboshitzky R, Zabari Z, Shen-Orr Z, Herer P, Lavie P . Disruption of the nocturnal testosterone rhythm by sleep fragmentation in normal men. J Clin Endocrinol Metab 2001; 86: 1134–1139.

    Article  CAS  PubMed  Google Scholar 

  34. Luboshitzky R, Aviv A, Hefetz A, Herer P, Shen-Orr Z, Lavie L et al. Decreased pituitary–gonadal secretion in men with obstructive sleep apnea. J Clin Endocrinol Metab 2002; 87: 3394–3398.

    Article  CAS  PubMed  Google Scholar 

  35. Bartsch C, Bartsch H, Fluchter SH, Mecke D, Lippert TH . Diminished pineal function coincides with disturbed circadian endocrine rhythmicity in untreated primary cancer patients. Consequence of premature aging or of tumor growth? Ann N Y Acad Sci 1994; 719: 502–525.

    Article  CAS  PubMed  Google Scholar 

  36. Carpen JD, Archer SN, Skene DJ, Smits M, von Schantz M . A single-nucleotide polymorphism in the 5′-untranslated region of the hPER2 gene is associated with diurnal preference. J Sleep Res 2005; 14: 293–297.

    Article  PubMed  Google Scholar 

  37. Carpen JD, von Schantz M, Smits M, Skene DJ, Archer SN . A silent polymorphism in the PER1 gene associates with extreme diurnal preference in humans. J Hum Genet 2006; 51: 1122–1125.

    Article  CAS  PubMed  Google Scholar 

  38. Mukhopadhyay NK, Ferdinand AS, Mukhopadhyay L, Cinar B, Lutchman M, Richie JP et al. Unraveling androgen receptor interactomes by an array-based method: discovery of proto-oncoprotein c-Rel as a negative regulator of androgen receptor. Exp Cell Res 2006; 312: 3782–3795.

    Article  CAS  PubMed  Google Scholar 

  39. Chokkalingam AP, Stanczyk FZ, Reichardt JKV, Hsing AW . Molecular epidemiology of prostate cancer: hormone-related genetic loci. Front Biosci 2007; 12: 3436–3460.

    Article  CAS  PubMed  Google Scholar 

  40. Saramaki O, Visakorpi T . Chromosomal aberrations in prostate cancer. Front Biosci 2007; 12: 3287–3301.

    Article  CAS  PubMed  Google Scholar 

  41. Dong J-T . Prevalent mutations in prostate cancer. J Cell Biochem 2006; 97: 433–447.

    Article  CAS  PubMed  Google Scholar 

  42. Chieffi P, Cozzolino L, Kisslinger A, Libertini S, Staibano S, Mansueto G et al. Aurora B expression directly correlates with prostate cancer malignancy and influence prostate cell proliferation. Prostate 2006; 66: 326–333.

    Article  CAS  PubMed  Google Scholar 

  43. Berndt SI, Chatterjee N, Huang W-Y, Chanock SJ, Welch R, Crawford ED et al. Variant in sex hormone-binding globulin gene and the risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 2007; 16: 165–168.

    Article  CAS  PubMed  Google Scholar 

  44. Jia WP, Xiang KS, Chen L, Lu J, Wu YM . Epidemiological study on obesity and its comorbidities in urban Chinese older than 20 years of age in Shanghai, China. Obes Rev 2002; 3: 157–165.

    Article  CAS  PubMed  Google Scholar 

  45. The International HapMap Consortium. A haplotype map of the human genome. Nature 2005; 437: 1299–1320.

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the staff of the Shanghai Cancer Institute for specimen collection and processing; collaborating hospitals and urologists for data collection; local pathologists for pathology review; Shelley Niwa of Westat and Gigi Yuan of Information Management Systems, Inc., for data management and preparation; and Janis Koci of the Scientific Applications International Corporation for management of the biological samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L W Chu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, L., Zhu, Y., Yu, K. et al. Variants in circadian genes and prostate cancer risk: a population-based study in China. Prostate Cancer Prostatic Dis 11, 342–348 (2008). https://doi.org/10.1038/sj.pcan.4501024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.pcan.4501024

Keywords

This article is cited by

Search

Quick links