Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Allelic imbalance and biochemical outcome after radical prostatectomy

Abstract

Objective:

To compare the incidence of allelic imbalance (AI) in men with rapid disease progression with those who remained disease free after radical prostatectomy, with the aim of identifying genetic markers to predict prognosis and guide further treatment.

Patients and methods:

Tumour and normal DNA were extracted from two matched groups of 31 men with extracapsular node-negative (pT3N0) prostate cancer who had undergone radical prostatectomy. One group comprised men who developed biochemical recurrence within 2 years of surgery and one group were prostate-specific antigen (PSA) free for at least 3 years. Men were matched for Gleason grade, preoperative PSA and pathological stage. Analysis was performed by genotyping.

Results:

Allelic imbalance was analysed using 30 markers, and was seen in at least one marker in 57 (92%) of the cases. Deletion at marker D10S211 (10p12.1) was significantly more common in the relapse group than the non-relapse group (35 vs 5%, P=0.03).

Conclusions:

This study demonstrates significant association between AI on chromosome 10 and biochemical progression after radical prostatectomy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Han M, Partin AW, Piantadosi S, Epstein JI, Walsh PC . Era specific biochemical recurrence-free survival following radical prostatectomy for clinically localized prostate cancer. J Urol 2001; 166: 416–419.

    Article  CAS  Google Scholar 

  2. Bott SR, Freeman AA, Stenning S, Cohen J, Parkinson MC . Radical prostatectomy: pathology findings in 1001 cases compared with other major series and over time. BJU Int 2005; 95: 34–39.

    Article  Google Scholar 

  3. Babaian RJ, Troncoso P, Bhadkamkar VA, Johnston DA . Analysis of clinicopathologic factors predicting outcome after radical prostatectomy. Cancer 2001; 91: 1414–1422.

    Article  CAS  Google Scholar 

  4. Pound CR, Partin AW, Epstein JI, Walsh PC . Prostate-specific antigen after anatomic radical retropubic prostatectomy. Patterns of recurrence and cancer control. Urol Clin N Am 1997; 24: 395–406.

    Article  CAS  Google Scholar 

  5. Salomon L, Levrel O, Anastasiadis AG, Irani J, De La TA, Saint F et al. Prognostic significance of tumor volume after radical prostatectomy: a multivariate analysis of pathological prognostic factors. Eur Urol 2003; 43: 39–44.

    Article  Google Scholar 

  6. van den Ouden D, Hop WC, Kranse R, Schroder FH . Tumour control according to pathological variables in patients treated by radical prostatectomy for clinically localized carcinoma of the prostate. Br J Urol 1997; 79: 203–211.

    Article  CAS  Google Scholar 

  7. Quinn DI, Henshall SM, Haynes AM, Brenner PC, Kooner R, Golovsky D et al. Prognostic significance of pathologic features in localized prostate cancer treated with radical prostatectomy: implications for staging systems and predictive models. J Clin Oncol 2001; 19: 3692–3705.

    Article  CAS  Google Scholar 

  8. Roberts WW, Bergstralh EJ, Blute ML, Slezak JM, Carducci M, Han M et al. Contemporary identification of patients at high risk of early prostate cancer recurrence after radical retropubic prostatectomy. Urology 2001; 57: 1033–1037.

    Article  CAS  Google Scholar 

  9. Sandberg AA . Cytogenetic and molecular genetic aspects of human prostate cancer: primary and metastatic. Adv Exp Med Biol 1992; 324: 45–75.

    Article  CAS  Google Scholar 

  10. Dahiya R, McCarville J, Lee C, Hu W, Kaur G, Carroll P et al. Deletion of chromosome 11p15, p12, q22, q23–24 loci in human prostate cancer. Int J Cancer 1997; 72: 283–288.

    Article  CAS  Google Scholar 

  11. Emmert-Buck MR, Vocke CD, Pozzatti RO, Duray PH, Jennings SB, Florence CD et al. Allelic loss on chromosome 8p12–21 in microdissected prostatic intraepithelial neoplasia. Cancer Res 1995; 55: 2959–2962.

    PubMed  CAS  Google Scholar 

  12. Macoska JA, Trybus TM, Benson PD, Sakr WA, Grignon DJ, Wojno KD et al. Evidence for three tumor suppressor gene loci on chromosome 8p in human prostate cancer. Cancer Res 1995; 55: 5390–5395.

    PubMed  CAS  Google Scholar 

  13. Hugel A, Wernert N . Loss of heterozygosity (LOH), malignancy grade and clonality in microdissected prostate cancer. Br J Cancer 1999; 79: 551–557.

    Article  CAS  Google Scholar 

  14. Narla G, Heath KE, Reeves HL, Li D, Giono LE, Kimmelman AC et al. KLF6, a candidate tumor suppressor gene mutated in prostate cancer. Science 2001; 294: 2563–2566.

    Article  CAS  Google Scholar 

  15. Carter BS, Ewing CM, Ward WS, Treiger BF, Aalders TW, Schalken JA et al. Allelic loss of chromosomes 16q and 10q in human prostate cancer. Proc Natl Acad Sci USA 1990; 87: 8751–8755.

    Article  CAS  Google Scholar 

  16. Gao X, Zacharek A, Grignon DJ, Sakr W, Powell IJ, Porter AT et al. Localization of potential tumor suppressor loci to a <2 Mb region on chromosome 17q in human prostate cancer. Oncogene 1995; 11: 1241–1247.

    PubMed  CAS  Google Scholar 

  17. Cooney KA, Wetzel JC, Consolino CM, Wojno KJ . Identification and characterization of proximal 6q deletions in prostate cancer. Cancer Res 1996; 56: 4150–4153.

    PubMed  CAS  Google Scholar 

  18. Dahiya R, McCarville J, Hu W, Lee C, Chui RM, Kaur G et al. Chromosome 3p24–26 and 3p22–12 loss in human prostatic adenocarcinoma. Int J Cancer 1997; 71: 20–25.

    Article  CAS  Google Scholar 

  19. Smith JR, Freije D, Carpten JD, Gronberg H, Xu J, Isaacs SD et al. Major susceptibility locus for prostate cancer on chromosome 1 suggested by a genome-wide search. Science 1996; 274: 1371–1374.

    Article  CAS  Google Scholar 

  20. Elo JP, Harkonen P, Kyllonen AP, Lukkarinen O, Vihko P . Three independently deleted regions at chromosome arm 16q in human prostate cancer: allelic loss at 16q24.1–q24.2 is associated with aggressive behaviour of the disease, recurrent growth, poor differentiation of the tumour and poor prognosis for the patient. Br J Cancer 1999; 79: 156–160.

    Article  CAS  Google Scholar 

  21. Kawana Y, Komiya A, Ueda T, Nihei N, Kuramochi H, Suzuki H et al. Location of KAI1 on the short arm of human chromosome 11 and frequency of allelic loss in advanced human prostate cancer. Prostate 1997; 32: 205–213.

    Article  CAS  Google Scholar 

  22. Saric T, Brkanac Z, Troyer DA, Padalecki SS, Sarosdy M, Williams K et al. Genetic pattern of prostate cancer progression. Int J Cancer 1999; 81: 219–224.

    Article  CAS  Google Scholar 

  23. Fromont G, Joulin V, Chantrel-Groussard K, Vallancien G, Guillonneau B, Validire P et al. Allelic losses in localized prostate cancer: association with prognostic factors. J Urol 2003; 170 (4 Part 1): 1394–1397.

    Article  CAS  Google Scholar 

  24. Suzuki H, Komiya A, Emi M, Kuramochi H, Shiraishi T, Yatani R et al. Three distinct commonly deleted regions of chromosome arm 16q in human primary and metastatic prostate cancers. Genes Chromosomes Cancer 1996; 17: 225–233.

    Article  CAS  Google Scholar 

  25. Gray IC, Phillips SM, Lee SJ, Neoptolemos JP, Weissenbach J, Spurr NK . Loss of the chromosomal region 10q23–25 in prostate cancer. Cancer Res 1995; 55: 4800–4803.

    PubMed  CAS  Google Scholar 

  26. Leube B, Drechsler M, Muhlmann K, Schafer R, Schulz WA, Santourlidis S et al. Refined mapping of allele loss at chromosome 10q23–26 in prostate cancer. Prostate 2002; 50: 135–144.

    Article  CAS  Google Scholar 

  27. Kibel AS, Faith DA, Bova GS, Isaacs WB . Loss of heterozygosity at 12P12–13 in primary and metastatic prostate adenocarcinoma. J Urol 2000; 164: 192–196.

    Article  CAS  Google Scholar 

  28. Catalona WJ, Ramos CG, Carvalhal GF . Contemporary results of anatomic radical prostatectomy. CA Cancer J Clin 1999; 49: 282–296.

    Article  CAS  Google Scholar 

  29. Hull GW, Rabbani F, Abbas F, Wheeler TM, Kattan MW, Scardino PT . Cancer control with radical prostatectomy alone in 1,000 consecutive patients. J Urol 2002; 167 (2 Pt 1): 528–534.

    Article  Google Scholar 

  30. Partin AW, Mangold LA, Lamm DM, Walsh PC, Epstein JI, Pearson JD . Contemporary update of prostate cancer staging nomograms (Partin Tables) for the new millennium. Urology 2001; 58: 843–848.

    Article  CAS  Google Scholar 

  31. Pound CR, Partin AW, Eisenberger MA, Chan DW, Pearson JD, Walsh PC . Natural history of progression after PSA elevation following radical prostatectomy. JAMA 1999; 281: 1591–1597.

    Article  CAS  Google Scholar 

  32. Aus G, Abbou CC, Heidenreich A, Schmid H-P, Van Poppel H, Wolff JM et al. Prostate Cancer. European Association of Urology Guidelines, 2003; p54.

    Google Scholar 

  33. Partin AW, Pound CR, Clemens JQ, Epstein JI, Walsh PC . Serum PSA after anatomic radical prostatectomy. The Johns Hopkins experience after 10 years. Urol Clin N Am 1993; 20: 713–725.

    CAS  Google Scholar 

  34. Haggman M, Nordin B, Mattson S, Busch C . Morphometric studies of intra-prostatic volume relationships in localized prostatic cancer. Br J Urol 1997; 80: 612–617.

    Article  CAS  Google Scholar 

  35. Bostwick DG, Shan A, Qian J, Darson M, Maihle NJ, Jenkins RB et al. Independent origin of multiple foci of prostatic intraepithelial neoplasia: comparison with matched foci of prostate carcinoma. Cancer 1998; 83: 1995–2002.

    Article  CAS  Google Scholar 

  36. Wu YQ, Chen H, Rubin MA, Wojno KJ, Cooney KA . Loss of heterozygosity of the putative prostate cancer susceptibility gene HPC2/ELAC2 is uncommon in sporadic and familial prostate cancer. Cancer Res 2001; 61: 8651–8653.

    PubMed  CAS  Google Scholar 

  37. Bostwick DG, Grignon DJ, Hammond ME, Amin MB, Cohen M, Crawford D et al. Prognostic factors in prostate cancer. College of American Pathologists Consensus Statement 1999. Arch Pathol Lab Med 2000; 124: 995–1000.

    PubMed  CAS  Google Scholar 

  38. Morita R, Saito S, Ishikawa J, Ogawa O, Yoshida O, Yamakawa K et al. Common regions of deletion on chromosomes 5q, 6q, and 10q in renal cell carcinoma. Cancer Res 1991; 51: 5817–5820.

    PubMed  CAS  Google Scholar 

  39. Karlbom AE, James CD, Boethius J, Cavenee WK, Collins VP, Nordenskjold M et al. Loss of heterozygosity in malignant gliomas involves at least three distinct regions on chromosome 10. Hum Genet 1993; 92: 169–174.

    Article  CAS  Google Scholar 

  40. Rempel SA, Schwechheimer K, Davis RL, Cavenee WK, Rosenblum ML . Loss of heterozygosity for loci on chromosome 10 is associated with morphologically malignant meningioma progression. Cancer Res 1993; 53 (10 Suppl): 2386–2392.

    PubMed  CAS  Google Scholar 

  41. Herbst RA, Weiss J, Ehnis A, Cavenee WK, Arden KC . Loss of heterozygosity for 10q22–10qter in malignant melanoma progression. Cancer Res 1994; 54: 3111–3114.

    PubMed  CAS  Google Scholar 

  42. Peiffer SL, Herzog TJ, Tribune DJ, Mutch DG, Gersell DJ, Goodfellow PJ . Allelic loss of sequences from the long arm of chromosome 10 and replication errors in endometrial cancers. Cancer Res 1995; 55: 1922–1926.

    PubMed  CAS  Google Scholar 

  43. Trybus TM, Burgess AC, Wojno KJ, Glover TW, Macoska JA . Distinct areas of allelic loss on chromosomal regions 10p and 10q in human prostate cancer. Cancer Res 1996; 56: 2263–2267.

    PubMed  CAS  Google Scholar 

  44. Ittmann M . Allelic loss on chromosome 10 in prostate adenocarcinoma. Cancer Res 1996; 56: 2143–2147.

    PubMed  CAS  Google Scholar 

  45. Komiya A, Suzuki H, Ueda T, Yatani R, Emi M, Ito H et al. Allelic losses at loci on chromosome 10 are associated with metastasis and progression of human prostate cancer. Genes Chromosomes Cancer 1996; 17: 245–253.

    Article  CAS  Google Scholar 

  46. Bergerheim US, Kunimi K, Collins VP, Ekman P . Deletion mapping of chromosomes 8, 10, and 16 in human prostatic carcinoma. Genes Chromosomes Cancer 1991; 3: 215–220.

    Article  CAS  Google Scholar 

  47. Sakr WA, Macoska JA, Benson P, Grignon DJ, Wolman SR, Pontes JE et al. Allelic loss in locally metastatic, multisampled prostate cancer. Cancer Res 1994; 54: 3273–3277.

    PubMed  CAS  Google Scholar 

  48. Macoska JA, Micale MA, Sakr WA, Benson PD, Wolman SR . Extensive genetic alterations in prostate cancer revealed by dual PCR and FISH analysis. Genes Chromosomes Cancer 1993; 8: 88–97.

    Article  CAS  Google Scholar 

  49. Phillips SM, Morton DG, Lee SJ, Wallace DM, Neoptolemos JP . Loss of heterozygosity of the retinoblastoma and adenomatous polyposis susceptibility gene loci and in chromosomes 10p, 10q and 16q in human prostate cancer. Br J Urol 1994; 73: 390–395.

    Article  CAS  Google Scholar 

  50. Dong JT, Chen C, Stultz BG, Isaacs JT, Frierson Jr HF . Deletion at 13q21 is associated with aggressive prostate cancers. Cancer Res 2000; 60: 3880–3883.

    PubMed  CAS  Google Scholar 

  51. Trapman J, Sleddens HF, van der Weiden MM, Dinjens WN, Konig JJ, Schroder FH et al. Loss of heterozygosity of chromosome 8 microsatellite loci implicates a candidate tumor suppressor gene between the loci D8S87 and D8S133 in human prostate cancer. Cancer Res 1994; 54: 6061–6064.

    PubMed  CAS  Google Scholar 

  52. MacGrogan D, Levy A, Bostwick D, Wagner M, Wells D, Bookstein R . Loss of chromosome arm 8p loci in prostate cancer: mapping by quantitative allelic imbalance. Genes Chromosomes Cancer 1994; 10: 151–159.

    Article  CAS  Google Scholar 

  53. Abate-Shen C, Shen MM . Molecular genetics of prostate cancer. Genes Dev 2000; 14: 2410–2434.

    Article  CAS  Google Scholar 

  54. Sato K, Qian J, Slezak JM, Lieber MM, Bostwick DG, Bergstralh EJ et al. Clinical significance of alterations of chromosome 8 in high-grade, advanced, nonmetastatic prostate carcinoma. J Natl Cancer Inst 1999; 91: 1574–1580.

    Article  CAS  Google Scholar 

  55. Ueda T, Komiya A, Emi M, Suzuki H, Shiraishi T, Yatani R et al. Allelic losses on 18q21 are associated with progression and metastasis in human prostate cancer. Genes Chromosomes Cancer 1997; 20: 140–147.

    Article  CAS  Google Scholar 

  56. Kattan MW, Wheeler TM, Scardino PT . Postoperative nomogram for disease recurrence after radical prostatectomy for prostate cancer. J Clin Oncol 1999; 17: 1499–1507.

    Article  CAS  Google Scholar 

  57. Behrens J, Mareel MM, Van Roy FM, Birchmeier W . Dissecting tumor cell invasion: epithelial cells acquire invasive properties after the loss of uvomorulin-mediated cell–cell adhesion. J Cell Biol 1989; 108: 2435–2447.

    Article  CAS  Google Scholar 

  58. Dong JT, Boyd JC, Frierson Jr HF . Loss of heterozygosity at 13q14 and 13q21 in high grade, high stage prostate cancer. Prostate 2001; 49: 166–171.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Our thanks to Dr A Freeman for his input of pathological data to the UCL database and to the surgical contributors Mr SM Bhanot, Mr PJR Boyd, Mr M Emberton, Mr RS Kirby, Prof AR Mundy, Mr EPN O'Donoghue, Mr PJR Shah, Mr P Shridar, Mr PHL Worth. Generous grants were received from the British Urological Foundation and AstraZeneca for this study and the Prostate Research Campaign UK for the UCL Radical Prostatectomy database.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S R J Bott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bott, S., Masters, J., Parkinson, M. et al. Allelic imbalance and biochemical outcome after radical prostatectomy. Prostate Cancer Prostatic Dis 9, 160–168 (2006). https://doi.org/10.1038/sj.pcan.4500862

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.pcan.4500862

Keywords

Search

Quick links