Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The emerging role of the PI3-K-Akt pathway in prostate cancer progression

Abstract

The PI3-K-Akt pathway plays a central role in the development and progression of prostate cancer and other malignancies. We review original studies and summarize relevant sections of previous reviews concerning the relationships between abnormalities in the PI3-K-Akt pathway and prostate cancer progression. We discuss laboratory and clinical data that indicate gene perturbation and dysregulation of PI3-K-Akt pathway is common in prostate cancer and other malignancies. We further discuss the critical role of the PI3-K-Akt pathway in the oncogenic signaling network and provide examples that establish the PI3-K-Akt pathway as a focal point for the future development of informative biomarkers and effective therapies for prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Blume-Jensen P, Hunter T . Oncogenic kinase signalling. Nature 2001; 411: 355–365.

    CAS  PubMed  Google Scholar 

  2. Cantley LC . The phosphoinositide 3-kinase pathway. Science 2002; 296: 1655–1657.

    CAS  PubMed  Google Scholar 

  3. Nicholson KM, Anderson NG . The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal 2002; 14: 381–395.

    CAS  PubMed  Google Scholar 

  4. Paez J, Sellers WR . PI3K/PTEN/AKT pathway. A critical mediator of oncogenic signaling. Cancer Treat Res 2003; 115: 145–167.

    CAS  PubMed  Google Scholar 

  5. Testa JR, Bellacosa A . AKT plays a central role in tumorigenesis. Proc Natl Acad Sci USA 2001; 98: 10983–10985.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Vivanco I, Sawyers CL . The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2002; 2: 489–501.

    CAS  PubMed  Google Scholar 

  7. Staal SP, Hartley JW . Thymic lymphoma induction by the AKT8 murine retrovirus. J Exp Med 1988; 167: 1259–1264.

    CAS  PubMed  Google Scholar 

  8. Leslie NR, Biondi RM, Alessi DR . Phosphoinositide-regulated kinases and phosphoinositide phosphatases. Chem Rev 2001; 101: 2365–2380.

    CAS  PubMed  Google Scholar 

  9. Alessi DR et al. Molecular basis for the substrate specificity of protein kinase B; comparison with MAPKAP kinase-1 and p70 S6 kinase. FEBS Lett 1996; 399: 333–338.

    CAS  PubMed  Google Scholar 

  10. Brazil DP, Hemmings BA . Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem Sci 2001; 26: 657–664.

    Article  CAS  PubMed  Google Scholar 

  11. Tan C et al. Regulation of tumor angiogenesis by integrin-linked kinase (ILK). Cancer Cell 2004; 5: 79–90.

    CAS  PubMed  Google Scholar 

  12. Troussard AA et al. Conditional knock-out of integrin-linked kinase demonstrates an essential role in protein kinase B/Akt activation. J Biol Chem 2003; 278: 22374–22378.

    CAS  PubMed  Google Scholar 

  13. Di Cristofano A, Pandolfi PP . The multiple roles of PTEN in tumor suppression. Cell 2000; 100: 387–390.

    CAS  PubMed  Google Scholar 

  14. Dahia PL . PTEN, a unique tumor-suppressor gene. Endocr Relat Cancer 2000; 7: 115–129.

    CAS  PubMed  Google Scholar 

  15. Cantley LC, Neel BG . New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci USA 1999; 96: 4240–4245.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Leslie NR, Downes CP . PTEN: the down side of PI 3-kinase signalling. Cell Signal 2002; 14: 285–295.

    CAS  PubMed  Google Scholar 

  17. Cohen PT . Protein phosphatase 1—targeted in many directions. J Cell Sci 2002; 115: 241–256.

    CAS  PubMed  Google Scholar 

  18. Janssens V, Goris J . Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J 2001; 353: 417–439.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Schonthal AH . Role of serine/threonine protein phosphatase 2A in cancer. Cancer Lett 2001; 170: 1–13.

    CAS  PubMed  Google Scholar 

  20. Davies MA et al. Regulation of Akt/PKB activity, cellular growth, and apoptosis in prostate carcinoma cells by MMAC/PTEN. Cancer Res 1999; 59: 2551–2556.

    CAS  PubMed  Google Scholar 

  21. Millward TA, Zolnierowicz S, Hemmings BA . Regulation of protein kinase cascades by protein phosphatase 2A. Trends Biochem Sci 1999; 24: 186–191.

    CAS  PubMed  Google Scholar 

  22. Resjo S et al. Protein phosphatase 2A is the main phosphatase involved in the regulation of protein kinase B in rat adipocytes. Cell Signal 2002; 14: 231–238.

    CAS  PubMed  Google Scholar 

  23. Ivaska J et al. Integrin alpha 2 beta 1 promotes activation of protein phosphatase 2A and dephosphorylation of Akt and glycogen synthase kinase 3 beta. Mol Cell Biol 2002; 22: 1352–1359.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Yellaturu CR, Bhanoori M, Neeli I, Rao GN . N-ethylmaleimide inhibits platelet-derived growth factor BB-stimulated Akt phosphorylation via activation of protein phosphatase 2A. J Biol Chem 2002; 277: 40148–40155.

    CAS  PubMed  Google Scholar 

  25. Teruel T, Hernandez R, Lorenzo M . Ceramide mediates insulin resistance by tumor necrosis factor-alpha in brown adipocytes by maintaining Akt in an inactive dephosphorylated state. Diabetes 2001; 50: 2563–2571.

    CAS  PubMed  Google Scholar 

  26. Cazzolli R, Carpenter L, Biden TJ, Schmitz-Peiffer C . A role for protein phosphatase 2A-like activity, but not atypical protein kinase Czeta, in the inhibition of protein kinase B/Akt and glycogen synthesis by palmitate. Diabetes 2001; 50: 2210–2218.

    CAS  PubMed  Google Scholar 

  27. Davidson B et al. Caveolin-1 expression in advanced-stage ovarian carcinoma—a clinicopathologic study. Gynecol Oncol 2001; 81: 166–171.

    CAS  PubMed  Google Scholar 

  28. Fine SW, Lisanti MP, Galbiati F, Li M . Elevated expression of caveolin-1 in adenocarcinoma of the colon. Am J Clin Pathol 2001; 115: 719–724.

    CAS  PubMed  Google Scholar 

  29. Goh M et al. Phenylbutyrate attenuates the expression of Bcl-X(L), DNA-PK, caveolin-1, and VEGF in prostate cancer cells. Neoplasia 2001; 3: 331–338.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ho CC et al. Up-regulated caveolin-1 accentuates the metastasis capability of lung adenocarcinoma by inducing filopodia formation. Am J Pathol 2002; 161: 1647–1656.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hu YC et al. Profiling of differentially expressed cancer-related genes in esophageal squamous cell carcinoma (ESCC) using human cancer cDNA arrays: overexpression of oncogene MET correlates with tumor differentiation in ESCC. Clin Cancer Res 2001; 7: 3519–3525.

    CAS  PubMed  Google Scholar 

  32. Ito Y et al. Caveolin-1 overexpression is an early event in the progression of papillary carcinoma of the thyroid. Br J Cancer 2002; 86: 912–916.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kato K et al. Overexpression of caveolin-1 in esophageal squamous cell carcinoma correlates with lymph node metastasis and pathologic stage. Cancer 2002; 94: 929–933.

    CAS  PubMed  Google Scholar 

  34. Podar K et al. Essential role of caveolae in interleukin-6- and insulin-like growth factor I-triggered Akt-1-mediated survival of multiple myeloma cells. J Biol Chem 2003; 278: 5794–5801.

    CAS  PubMed  Google Scholar 

  35. Rajjayabun PH et al. Caveolin-1 expression is associated with high-grade bladder cancer. Urology 2001; 58: 811–814.

    CAS  PubMed  Google Scholar 

  36. Suzuoki M et al. Impact of caveolin-1 expression on prognosis of pancreatic ductal adenocarcinoma. Br J Cancer 2002; 87: 1140–1144.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Tso CL et al. Androgen deprivation induces selective outgrowth of aggressive hormone-refractory prostate cancer clones expressing distinct cellular and molecular properties not present in parental androgen-dependent cancer cells. Cancer J 2000; 6: 220–233.

    CAS  PubMed  Google Scholar 

  38. Wu D et al. Protein kinase cepsilon has the potential to advance the recurrence of human prostate cancer. Cancer Res 2002; 62: 2423–2429.

    CAS  PubMed  Google Scholar 

  39. Yang CP et al. Upregulation of caveolin-1 and caveolae organelles in Taxol-resistant A549 cells. FEBS Lett 1998; 439: 368–372.

    CAS  PubMed  Google Scholar 

  40. Yang G, Truong LD, Wheeler TM, Thompson TC . Caveolin-1 expression in clinically confined human prostate cancer: a novel prognostic marker. Cancer Res 1999; 59: 5719–5723.

    CAS  PubMed  Google Scholar 

  41. Li L et al. Caveolin-1 maintains activated Akt in prostate cancer cells through scaffolding domain binding site interactions with and inhibition of serine/threonine protein phosphatases PP1 and PP2A. Mol Cell Biol 2003; 23: 9389–9404.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Couet J et al. Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. J Biol Chem 1997; 272: 6525–6533.

    CAS  PubMed  Google Scholar 

  43. Luo J, Manning BD, Cantley LC . Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell 2003; 4: 257–262.

    CAS  PubMed  Google Scholar 

  44. Obata T et al. Peptide and protein library screening defines optimal substrate motifs for AKT/PKB. J Biol Chem 2000; 275: 36108–36115.

    CAS  PubMed  Google Scholar 

  45. Brunet A et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999; 96: 857–868.

    CAS  PubMed  Google Scholar 

  46. Datta SR et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997; 91: 231–241.

    CAS  PubMed  Google Scholar 

  47. Yamaguchi H, Wang HG . The protein kinase PKB/Akt regulates cell survival and apoptosis by inhibiting Bax conformational change. Oncogene 2001; 20: 7779–7786.

    CAS  PubMed  Google Scholar 

  48. Cardone MH et al. Regulation of cell death protease caspase-9 by phosphorylation. Science 1998; 282: 1318–1321.

    CAS  PubMed  Google Scholar 

  49. Chrivia JC et al. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 1993; 365: 855–859.

    CAS  PubMed  Google Scholar 

  50. Wilson BE, Mochon E, Boxer LM . Induction of bcl-2 expression by phosphorylated CREB proteins during B-cell activation and rescue from apoptosis. Mol Cell Biol 1996; 16: 5546–5556.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Romashkova JA, Makarov SS . NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature 1999; 401: 86–90.

    CAS  PubMed  Google Scholar 

  52. Grimes CA, Jope RS . The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog Neurobiol 2001; 65: 391–426.

    CAS  PubMed  Google Scholar 

  53. Kim AH et al. Akt phosphorylates and negatively regulates apoptosis signal-regulating kinase 1. Mol Cell Biol 2001; 21: 893–901.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Mayo LD, Donner DB . A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci USA 2001; 98: 11598–11603.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Tanno S et al. AKT activation up-regulates insulin-like growth factor I receptor expression and promotes invasiveness of human pancreatic cancer cells. Cancer Res 2001; 61: 589–593.

    CAS  PubMed  Google Scholar 

  56. Thant AA et al. Fibronectin activates matrix metalloproteinase-9 secretion via the MEK1-MAPK and the PI3K-Akt pathways in ovarian cancer cells. Clin Exp Metastasis 2000; 18: 423–428.

    CAS  PubMed  Google Scholar 

  57. Chan J, Bayliss PE, Wood JM, Roberts TM . Dissection of angiogenic signaling in zebrafish using a chemical genetic approach. Cancer Cell 2002; 1: 257–267.

    CAS  PubMed  Google Scholar 

  58. Navarro D et al. Transition to androgen-independence in prostate cancer. J Steroid Biochem Mol Biol 2002; 81: 191.

    CAS  PubMed  Google Scholar 

  59. Gelmann EP . Molecular biology of the androgen receptor. J Clin Oncol 2002; 20: 3001–3015.

    CAS  PubMed  Google Scholar 

  60. Lin HK, Yeh S, Kang HY, Chang C . Akt suppresses androgen-induced apoptosis by phosphorylating and inhibiting androgen receptor. Proc Natl Acad Sci USA 2001; 98: 7200–7205.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Wen Y et al. HER-2/neu promotes androgen-independent survival and growth of prostate cancer cells through the Akt pathway. Cancer Res 2000; 60: 6841–6845.

    CAS  PubMed  Google Scholar 

  62. Gioeli D et al. Androgen receptor phosphorylation. Regulation and identification of the phosphorylation sites. J Biol Chem 2002; 277: 29304–29314.

    CAS  PubMed  Google Scholar 

  63. Lu ML et al. Caveolin-1 interacts with androgen receptor. A positive modulator of androgen receptor mediated transactivation. J Biol Chem 2001; 276: 13442–13451.

    CAS  PubMed  Google Scholar 

  64. Culig Z et al. Androgen receptors in prostate cancer. J Urol 2003; 170: 1363–1369.

    CAS  PubMed  Google Scholar 

  65. Cronauer MV et al. The androgen receptor in hormone-refractory prostate cancer: relevance of different mechanisms of androgen receptor signaling (Review). Int J Oncol 2003; 23: 1095–1102.

    CAS  PubMed  Google Scholar 

  66. Gelmann EP . Molecular biology of the androgen receptor. J Clin Oncol 2002; 20: 3001–3015.

    CAS  PubMed  Google Scholar 

  67. Yeh S et al. Differential induction of the androgen receptor transcriptional activity by selective androgen receptor coactivators. Keio J Med 1999; 48: 87–92.

    CAS  PubMed  Google Scholar 

  68. Gnanapragasam VJ et al. Expression of RAC 3, a steroid hormone receptor co-activator in prostate cancer. Br J Cancer 2001; 85: 1928–1936.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhou G et al. Role of the steroid receptor coactivator SRC-3 in cell growth. Mol Cell Biol 2003; 23: 7742–7755.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhou BP, Hung MC . Novel targets of Akt, p21(Cipl/WAF1), and MDM2. Semin Oncol 2002; 29: 62–70.

    CAS  PubMed  Google Scholar 

  71. Viglietto G et al. Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase inhibitor p27(Kip1) by PKB/Akt-mediated phosphorylation in breast cancer. Nat Med 2002; 8: 1136–1144.

    CAS  PubMed  Google Scholar 

  72. Graff JR et al. Increased AKT activity contributes to prostate cancer progression by dramatically accelerating prostate tumor growth and diminishing p27Kip1 expression. J Biol Chem 2000; 275: 24500–24505.

    CAS  PubMed  Google Scholar 

  73. Evan GI, Vousden KH . Proliferation, cell cycle and apoptosis in cancer. Nature 2001; 411: 342–348.

    CAS  PubMed  Google Scholar 

  74. Schmelzle T, Hall MN . TOR, a central controller of cell growth. Cell 2000; 103: 253–262.

    CAS  PubMed  Google Scholar 

  75. Altiok S et al. Heregulin induces phosphorylation of BRCA1 through phosphatidylinositol 3-Kinase/AKT in breast cancer cells. J Biol Chem 1999; 274: 32274–32278.

    CAS  PubMed  Google Scholar 

  76. Dimmeler S et al. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 1999; 399: 601–605.

    CAS  PubMed  Google Scholar 

  77. Fulton D et al. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 1999; 399: 597–601.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Nakatani K et al. Up-regulation of Akt3 in estrogen receptor-deficient breast cancers and androgen-independent prostate cancer lines. J Biol Chem 1999; 274: 21528–21532.

    CAS  PubMed  Google Scholar 

  79. Edwards J, Krishna NS, Witton CJ, Bartlett JM . Gene amplifications associated with the development of hormone-resistant prostate cancer. Clin Cancer Res 2003; 9: 5271–5281.

    CAS  PubMed  Google Scholar 

  80. Bellacosa A et al. Molecular alterations of the AKT2 oncogene in ovarian and breast carcinomas. Int J Cancer 1995; 64: 280–285.

    CAS  PubMed  Google Scholar 

  81. Cheng JQ et al. AKT2, a putative oncogene encoding a member of a subfamily of protein-serine/threonine kinases, is amplified in human ovarian carcinomas. Proc Natl Acad Sci USA 1992; 89: 9267–9271.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Cheng JQ et al. Amplification of AKT2 in human pancreatic cells and inhibition of AKT2 expression and tumorigenicity by antisense RNA. Proc Natl Acad Sci USA 1996; 93: 3636–3641.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Staal SP . Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma. Proc Natl Acad Sci USA 1987; 84: 5034–5037.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Ringel MD et al. Overexpression and overactivation of Akt in thyroid carcinoma. Cancer Res 2001; 61: 6105–6111.

    CAS  PubMed  Google Scholar 

  85. Sun M et al. AKT1/PKBalpha kinase is frequently elevated in human cancers and its constitutive activation is required for oncogenic transformation in NIH3T3 cells. Am J Pathol 2001; 159: 431–437.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Liao Y et al. Increase of AKT/PKB expression correlates with gleason pattern in human prostate cancer. Int J Cancer 2003; 107: 676–680.

    CAS  PubMed  Google Scholar 

  87. Shayesteh L et al. PIK3CA is implicated as an oncogene in ovarian cancer. Nat Genet 1999; 21: 99–102.

    CAS  PubMed  Google Scholar 

  88. Philp AJ et al. The phosphatidylinositol 3′-kinase p85alpha gene is an oncogene in human ovarian and colon tumors. Cancer Res 2001; 61: 7426–7429.

    CAS  PubMed  Google Scholar 

  89. Mass RD . The HER receptor family: a rich target for therapeutic development. Int J Radiat Oncol Biol Phys 2004; 58: 932–940.

    CAS  PubMed  Google Scholar 

  90. Agus DB et al. A potential role for activated HER-2 in prostate cancer. Semin Oncol 2000; 27: 76–83, discussion 92–100.

    CAS  PubMed  Google Scholar 

  91. Roskoski Jr R . The ErbB/HER receptor protein–tyrosine kinases and cancer. Biochem Biophys Res Commun 2004; 319: 1–11.

    CAS  PubMed  Google Scholar 

  92. Marmor MD, Skaria KB, Yarden Y . Signal transduction and oncogenesis by ErbB/HER receptors. Int J Radiat Oncol Biol Phys 2004; 58: 903–913.

    CAS  PubMed  Google Scholar 

  93. Deocampo ND, Huang H, Tindall DJ . The role of PTEN in the progression and survival of prostate cancer. Minerva Endocrinol 2003; 28: 145–153.

    CAS  PubMed  Google Scholar 

  94. Ittmann MM . Chromosome 10 alterations in prostate adenocarcinoma (review). Oncol Rep 1998; 5: 1329–1335.

    CAS  PubMed  Google Scholar 

  95. Ali IU, Schriml LM, Dean M . Mutational spectra of PTEN/MMAC1 gene: a tumor-suppressor with lipid phosphatase activity. J Natl Cancer Inst 1999; 91: 1922–1932.

    CAS  PubMed  Google Scholar 

  96. Dong JT . Chromosomal deletions and tumor-suppressor genes in prostate cancer. Cancer Metastasis Rev 2001; 20: 173–193.

    CAS  PubMed  Google Scholar 

  97. Latini JM et al. Loss of heterozygosity and microsatellite instability at chromosomal sites 1Q and 10Q in morphologically distinct regions of late stage prostate lesions. J Urol 2001; 166: 1931–1936.

    CAS  PubMed  Google Scholar 

  98. Rubin MA et al. 10q23.3 loss of heterozygosity is higher in lymph node-positive (pT2-3,N+) versus lymph node-negative (pT2-3,N0) prostate cancer. Hum Pathol 2000; 31: 504–508.

    CAS  PubMed  Google Scholar 

  99. Gray IC et al. Mutation and expression analysis of the putative prostate tumour-suppressor gene PTEN. Br J Cancer 1998; 78: 1296–1300.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Pesche S et al. PTEN/MMAC1/TEP1 involvement in primary prostate cancers. Oncogene 1998; 16: 2879–2883.

    CAS  PubMed  Google Scholar 

  101. Feilotter HE et al. Analysis of PTEN and the 10q23 region in primary prostate carcinomas. Oncogene 1998; 16: 1743–1748.

    CAS  PubMed  Google Scholar 

  102. Dong JT, Li CL, Sipe TW, Frierson Jr HF . Mutations of PTEN/MMAC1 in primary prostate cancers from Chinese patients. Clin Cancer Res 2001; 7: 304–308.

    CAS  PubMed  Google Scholar 

  103. Muller M, Rink K, Krause H, Miller K . PTEN/MMAC1 mutations in prostate cancer. Prostate Cancer Prostatic Dis 2000; 3: S32.

    CAS  PubMed  Google Scholar 

  104. Rennie PS, Nelson CC . Epigenetic mechanisms for progression of prostate cancer. Cancer Metastasis Rev 1998; 17: 401–409.

    CAS  PubMed  Google Scholar 

  105. Whang YE et al. Inactivation of the tumor suppressor PTEN/MMAC1 in advanced human prostate cancer through loss of expression. Proc Natl Acad Sci USA 1998; 95: 5246–5250.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Wang S et al. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell 2003; 4: 209–221.

    CAS  PubMed  Google Scholar 

  107. Yang G et al. Elevated Skp2 protein expression in human prostate cancer: association with loss of the cyclin-dependent kinase inhibitor p27 and PTEN and with reduced recurrence-free survival. Clin Cancer Res 2002; 8: 3419–3426.

    CAS  PubMed  Google Scholar 

  108. McMenamin ME et al. Loss of PTEN expression in paraffin-embedded primary prostate cancer correlates with high Gleason score and advanced stage. Cancer Res 1999; 59: 4291–4296.

    CAS  PubMed  Google Scholar 

  109. Wang SS et al. Alterations of the PPP2R1B gene in human lung and colon cancer. Science 1998; 282: 284–287.

    CAS  PubMed  Google Scholar 

  110. Calin GA et al. Low frequency of alterations of the alpha (PPP2R1A) and beta (PPP2R1B) isoforms of the subunit A of the serine-threonine phosphatase 2A in human neoplasms. Oncogene 2000; 19: 1191–1195.

    CAS  PubMed  Google Scholar 

  111. Ruediger R, Pham HT, Walter G . Alterations in protein phosphatase 2A subunit interaction in human carcinomas of the lung and colon with mutations in the A beta subunit gene. Oncogene 2001; 20: 1892–1899.

    CAS  PubMed  Google Scholar 

  112. Ruediger R, Pham HT, Walter G . Disruption of protein phosphatase 2A subunit interaction in human cancers with mutations in the A alpha subunit gene. Oncogene 2001; 20: 10–15.

    CAS  PubMed  Google Scholar 

  113. Deichmann M et al. The protein phosphatase 2A subunit Bgamma gene is identified to be differentially expressed in malignant melanomas by subtractive suppression hybridization. Melanoma Res 2001; 11: 577–585.

    CAS  PubMed  Google Scholar 

  114. Tamrakar S, Rubin E, Ludlow JW . Role of pRB dephosphorylation in cell cycle regulation. Front Biosci 2000; 5: D121–D137.

    CAS  PubMed  Google Scholar 

  115. Takakura S et al. Genetic alterations and expression of the protein phosphatase 1 genes in human cancers. Int J Oncol 2001; 18: 817–824.

    CAS  PubMed  Google Scholar 

  116. Kohno T et al. Alterations of the PPP1R3 gene in human cancer. Cancer Res 1999; 59: 4170–4174.

    CAS  PubMed  Google Scholar 

  117. Ayala G et al. High levels of phosphorylated form of Akt-1 in prostate cancer and nonneoplastic tissues are strong predictors of biochemical recurrence. Clinic Cancer Res 2004; 10: 6572–6578.

    CAS  Google Scholar 

  118. Hu L et al. Inhibition of phosphatidylinositol 3′-kinase increases efficacy of paclitaxel in in vitro and in vivo ovarian cancer models. Cancer Res 2002; 62: 1087–1092.

    CAS  PubMed  Google Scholar 

  119. Eaton SR et al. Design of peptidomimetics that inhibit the association of phosphatidylinositol 3-kinase with platelet-derived growth factor-beta receptor and possess cellular activity. J Med Chem 1998; 41: 4329–4342.

    CAS  PubMed  Google Scholar 

  120. Kozikowski AP, Sun H, Brognard J, Dennis PA . Novel PI analogues selectively block activation of the pro-survival serine/threonine kinase Akt. J Am Chem Soc 2003; 125: 1144–1145.

    CAS  PubMed  Google Scholar 

  121. Thomas CC, Deak M, Alessi DR, van Aalten DM . High-resolution structure of the pleckstrin homology domain of protein kinase b/akt bound to phosphatidylinositol (3,4,5)-trisphosphate. Curr Biol 2002; 12: 1256–1262.

    CAS  PubMed  Google Scholar 

  122. Lawlor MA, Alessi DR . PKB/Akt: a key mediator of cell proliferation, survival and insulin responses? J Cell Sci 2001; 114: 2903–2910.

    CAS  PubMed  Google Scholar 

  123. Tahir SA et al. Development of an immunoassay for serum caveolin-1: a novel biomarker for prostate cancer. Clin Cancer Res 2003; 9: 3653–3659.

    CAS  PubMed  Google Scholar 

  124. Tahir SA et al. Secreted caveolin-1 stimulates cell survival/clonal growth and contributes to metastasis in androgen-insensitive prostate cancer. Cancer Res 2001; 61: 3882–3885.

    CAS  PubMed  Google Scholar 

  125. Huang S, Houghton PJ . Targeting mTOR signaling for cancer therapy. Curr Opin Pharmacol 2003; 3: 371–377.

    CAS  PubMed  Google Scholar 

  126. Yu K et al. mTOR, a novel target in breast cancer: the effect of CCI-779, an mTOR inhibitor, in preclinical models of breast cancer. Endocr Relat Cancer 2001; 8: 249–258.

    PubMed  Google Scholar 

  127. Neshat MS et al. Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc Natl Acad Sci USA 2001; 98: 10314–10319.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Podsypanina K et al. An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten+/− mice. Proc Natl Acad Sci USA 2001; 98: 10320–10325.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Dudkin L et al. Biochemical correlates of mTOR inhibition by the rapamycin ester CCI-779 and tumor growth inhibition. Clin Cancer Res 2001; 7: 1758–1764.

    CAS  PubMed  Google Scholar 

  130. Saunders RN, Metcalfe MS, Nicholson ML . Rapamycin in transplantation: a review of the evidence. Kidney Int 2001; 59: 3–16.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Cancer Institute Grants CA68814 and SPORE P50-58204.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T C Thompson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Ittmann, M., Ayala, G. et al. The emerging role of the PI3-K-Akt pathway in prostate cancer progression. Prostate Cancer Prostatic Dis 8, 108–118 (2005). https://doi.org/10.1038/sj.pcan.4500776

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.pcan.4500776

Keywords

This article is cited by

Search

Quick links