Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Proteome analysis of prostate cancer

Abstract

In this paper, we briefly review cancer proteomics in general, with particular attention to our proteome analyses of prostate cancer. Our efforts include development of new tools and novel approaches to discovering proteins potentially useful as cancer diagnostic and/or prognostic biomarkers or as therapeutic targets. To this end, we analyzed prostate cancer proteomes using two-dimensional gel electrophoresis employing agarose gels for the initial isoelectric focusing step (agarose 2-DE), with mass spectrometry used for protein identification. Agarose 2-DE offers advantages over the more widely used immobilized pH gradient 2-DE for separating high molecular mass proteins (15–500 kDa), thereby increasing its power to detect changes in the cancer's high-molecular mass proteomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Wilkins MR et al. From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Biotechnology (NY) 1996; 14: 61–65.

    CAS  Google Scholar 

  2. Klose J, Kobalz U . Two-dimensional electrophoresis of proteins: an updated protocol and implications for a functional analysis of the genome. Electrophoresis 1995; 16: 1034–1059.

    Article  CAS  Google Scholar 

  3. O'Farrell PH . High resolution two-dimensional electrophoresis of proteins. J Biol Chem 1975; 250: 4007–4021.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Figeys D, Ducret A, Yates III JR, Aebersold R . Protein identification by solid phase microextraction–capillary zone electrophoresis–microelectrospray–tandem mass spectrometry. Nat Biotechnol 1996; 14: 1579–1583.

    Article  CAS  Google Scholar 

  5. Aebersold R, Mann M . Mass spectrometry-based proteomics. Nature 2003; 422: 198–207.

    Article  CAS  Google Scholar 

  6. Wang H, Hanash S . Multi-dimensional liquid phase based separations in proteomics. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 787: 11–18.

    Article  CAS  Google Scholar 

  7. Ferrari L et al. Protein profiles in sera of patients with malignant cutaneous melanoma. Rapid Commun Mass Spectrom 2000; 14: 1149–1154.

    Article  CAS  Google Scholar 

  8. MacBeath G . Protein microarrays and proteomics. Nat Genet 2002; 32: 526–532.

    Article  CAS  Google Scholar 

  9. Issaq HJ, Veenstra TD, Conrads TP, Felschow D . The SELDI-TOF MS approach to proteomics: protein profiling and biomarker identification. Biochem Biophys Res Commun 2002; 292: 587–592.

    Article  CAS  Google Scholar 

  10. Merchant M, Weinberger SR . Recent advancements in surface-enhanced laser desorption/ionization-time of flight-mass spectrometry. Electrophoresis 2000; 21: 1164–1177.

    Article  CAS  Google Scholar 

  11. Patton WF . Detection technologies in proteome analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 771: 3–31.

    Article  CAS  Google Scholar 

  12. Gygi SP et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 1999; 17: 994–999.

    Article  CAS  Google Scholar 

  13. Figeys D, van Oostveen I, Ducret A, Aebersold R . Protein identification by capillary zone electrophoresis/microelectrospray ionization–tandem mass spectrometry at the subfemtomole level. Anal Chem 1996; 68: 1822–1828.

    Article  CAS  Google Scholar 

  14. Wilm M et al. Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature 1996; 379: 466–469.

    Article  CAS  Google Scholar 

  15. Oh-Ishi M, Satoh M, Maeda T . Preparative two-dimensional gel electrophoresis with agarose gels in the first dimension for high molecular mass proteins. Electrophoresis 2000; 21: 1653–1669.

    Article  CAS  Google Scholar 

  16. Zhou G et al. 2D differential in-gel electrophoresis for the identification of esophageal scans cell cancer-specific protein markers. Mol Cell Proteomics 2002; 1: 117–124.

    Article  CAS  Google Scholar 

  17. Vihinen M . Bioinformatics in proteomics. Biomol Eng 2001; 18: 241–248.

    Article  CAS  Google Scholar 

  18. Hirabayashi T . Two-dimensional gel electrophoresis of chicken skeletal muscle proteins with agarose gels in the first dimension. Anal Biochem 1981; 117: 443–451.

    Article  CAS  Google Scholar 

  19. Oh-Ishi M, Maeda T . Separation techniques for high molecular mass proteins. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 771: 49–66.

    Article  CAS  Google Scholar 

  20. Jemal A et al. Cancer statistics, 2003. CA Cancer J Clin 2003; 53: 5–26.

    Article  Google Scholar 

  21. Chan DW, Sokoll LJ . Prostate-specific antigen: update 1997. J Int Fed Clin Chem 1997; 9: 120–125.

    CAS  PubMed  Google Scholar 

  22. Partin AW, Oesterling JE . The clinical usefulness of percent free-PSA. Urology 1996; 48: 1–3.

    Article  CAS  Google Scholar 

  23. Crawford ED, DeAntoni EP, Ross CA . The role of prostate-specific antigen in the chemoprevention of prostate cancer. J Cell Biochem Suppl 1996; 25: 149–155.

    Article  CAS  Google Scholar 

  24. Grover PK, Resnick MI . Analysis of prostatic fluid: evidence for the presence of a prospective marker for prostatic cancer. Prostate 1995; 26: 12–18.

    Article  CAS  Google Scholar 

  25. Grover PK, Resnick MI . High resolution two-dimensional electrophoretic analysis of urinary proteins of patients with prostatic cancer. Electrophoresis 1997; 18: 814–818.

    Article  CAS  Google Scholar 

  26. Partin AW et al. Nuclear matrix protein patterns in human benign prostatic hyperplasia and prostate cancer. Cancer Res 1993; 53: 744–746.

    CAS  PubMed  Google Scholar 

  27. Alaiya A et al. Polypeptide expression in prostate hyperplasia and prostate adenocarcinoma. Anal Cell Pathol 2000; 21: 1–9.

    Article  CAS  Google Scholar 

  28. Alaiya AA et al. Identification of proteins in human prostate tumor material by two-dimensional gel electrophoresis and mass spectrometry. Cell Mol Life Sci 2001; 58: 307–311.

    Article  CAS  Google Scholar 

  29. Xiao Z et al. Quantitation of serum prostate-specific membrane antigen by a novel protein biochip immunoassay discriminates benign from malignant prostate disease. Cancer Res 2001; 61: 6029–6033.

    CAS  Google Scholar 

  30. Cazares LH et al. Normal, benign, preneoplastic, and malignant prostate cells have distinct protein expression profiles resolved by surface enhanced laser desorption/ionization mass spectrometry. Clin Cancer Res 2002; 8: 2541–2552.

    CAS  PubMed  Google Scholar 

  31. Petricoin III EF et al. Serum proteomic patterns for detection of prostate cancer. J Natl Cancer Inst 2002; 94: 1576–1578.

    Article  CAS  Google Scholar 

  32. Adam BL et al. Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res 2002; 62: 3609–3614.

    CAS  Google Scholar 

  33. Qu Y et al. Boosted decision tree analysis of surface-enhanced laser desorption/ionization mass spectral serum profiles discriminates prostate cancer from noncancer patients. Clin Chem 2002; 48: 1835–1843.

    CAS  PubMed  Google Scholar 

  34. Banez LL et al. Diagnostic potential of serum proteomic patterns in prostate cancer. J Urol 2003; 170: 442–446.

    Article  CAS  Google Scholar 

  35. Griffin TJ et al. Abundance ratio-dependent proteomic analysis by mass spectrometry. Anal Chem 2003; 75: 867–874.

    Article  CAS  Google Scholar 

  36. Hawkins V et al. PEDB: the prostate expression database. Nucleic Acids Res 1999; 27: 204–208.

    Article  CAS  Google Scholar 

  37. Nelson PS et al. Comprehensive analyses of prostate gene expression: convergence of expressed sequence tag databases, transcript profiling and proteomics. Electrophoresis 2000; 21: 1823–1831.

    Article  CAS  Google Scholar 

  38. Davila M, Frost AR, Grizzle WE, Chakrabarti R . LIM kinase 1 is essential for invasive growth of prostate epithelial cells. J Biol Chem 2003; 278: 36868–36875.

    Article  CAS  Google Scholar 

  39. Moul JM, Merseburger AS, Srivastava S . Molecular markers in prostate cancer: the role in preoperative staging. Clin Prostate Cancer 2002; 1: 42–50.

    Article  CAS  Google Scholar 

  40. Gygi SP, Rochon Y, Franza BR, Aebersold R . Correlation between protein and mRNA abundance in Yeast. Mol Cell Biol 1999; 19: 1720–1730.

    Article  CAS  Google Scholar 

  41. Waghray A et al. Identification of androgen-regulated genes in the prostate cancer cell line LNCaP by serial analysis of gene expression and proteomic analysis. Proteomics 2001; 1: 1327–1338.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank WA Thomasson, PhD, for expert editorial assistance. This work was supported by Grant-in-Aid for Scientific Research on Priority Areas ‘Medical Genome Science’ from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Egawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuruma, H., Egawa, S., Oh-Ishi, M. et al. Proteome analysis of prostate cancer. Prostate Cancer Prostatic Dis 8, 14–21 (2005). https://doi.org/10.1038/sj.pcan.4500764

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.pcan.4500764

Keywords

This article is cited by

Search

Quick links