Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Apoptotic regulators in prostatic intraepithelial neoplasia (PIN): value in prostate cancer detection and prevention

Abstract

Early diagnosis of prostate cancer holds tremendous promise for the effective therapy and impact on survival of prostate cancer patients. High-grade prostatic intraepithelial neoplasia (HGPIN) is generally accepted as a lesion indicative of a late pathological event in the premalignant changes leading to full development of prostate cancer. This review seeks to identify specific molecular events that may be linked directly to the molecular transition from benign prostate epithelial cells to prostate carcinoma. HGPIN is pathologically detected in a limited group of men undergoing prostate cancer screening for an elevated serum prostate-specific antigen (PSA) or abnormal digital rectal examination (DRE). Loss of apoptotic control provides a molecular basis for the contribution of specific defective steps in the pathway towards development and progression of prostate cancer. Comparative dissection of the apoptosis status and expression profile of key apoptotic regulators among foci of highly proliferative benign prostatic epithelium, PIN and prostate adenocarcinoma from adjacent areas of the same gland revealed a novel insight into the dysfunctional apoptosis events contributing to prostate carcinogenesis. The sequential and notable loss of the three critical signaling components of the apoptotic action of transforming growth factor-β (TGF-β), in the prostate, that is, the transmembrane receptor II (TβRII), the key cell cycle inhibitor p27Kip1, as well as the protagonist downstream effector of the TGF-β signaling mechanism, Smad4, points to their potential value to ‘faithfully’ characterize HGPIN, as a premalignant prostate lesion. Recent evidence on the molecular changes in apoptosis regulators contributing to HGPIN and their role as molecular markers of disease onset, as well as candidates for therapeutic targeting/chemoprevention of prostate cancer in its early stages will be discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Weir HK et al. Annual Report to the Nation on the Status of Cancer, 1975–2000, featuring the uses of surveillance data for cancer prevention and control. J Natl Cancer Inst 2003; 95: 1276–1299.

    PubMed  Google Scholar 

  2. Berges RR et al. Implication of cell kinetic changes during the progression of human prostatic cancer. Clin Cancer Res 1995; 1: 473–480.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Tu H, Jacobs SC, Borkowski A, Kyprianou N . Incidence of apoptosis and cell proliferation in prostate cancer: relationship with TGF-β and bcl-2 expression. Int J Cancer 1996; 69: 357–363.

    CAS  PubMed  Google Scholar 

  4. Foster CS et al. Cellular and molecular pathology of prostate cancer precursors. Scand J Urol Nephrol 2000; 205 (Suppl): 19–43.

    Google Scholar 

  5. Sakr WA, Partin AW . Histological markers of risk and the role of high-grade prostatic intraepithelial neoplasia. Urology 2001; 57: 115–120.

    CAS  PubMed  Google Scholar 

  6. Sakr WA et al. Age and racial distribution of prostatic intraepithelial neoplasia. Eur Urol 1996; 30: 138–144.

    CAS  PubMed  Google Scholar 

  7. Bostwick DG . Prostatic intraepithelial neoplasia is a risk factor for cancer. Semin Urol Oncol 1999; 17: 187–198.

    CAS  PubMed  Google Scholar 

  8. McNeal JE, Bostwick DG . Intraductal dysplasia: a premalignant lesion of the prostate. Hum Pathol 1986; 17: 64–71.

    CAS  PubMed  Google Scholar 

  9. Bostwick DG, Brawer MK . Prostatic intra-epithelial neoplasia and early invasion in prostate cancer. Cancer 1987; 59: 788–794.

    CAS  PubMed  Google Scholar 

  10. Qian J, Wollan P, Bostwick DG . The extent and multicentricity of high grade intraepithial neoplasia in clinically localized prostatic adenocarcinoma. Hum Pathol 1997; 28: 143–148.

    CAS  PubMed  Google Scholar 

  11. Chen JZ et al. Extensive somatic mitochondrial mutations in primary prostate cancer using laser capture microdissection. Cancer Res 2000; 62: 6470–6474.

    Google Scholar 

  12. Zeng L, Rowland RG, Lele SM, Kyprianou N . Apoptotic profiling of premalignant and malignant human prostate. Hum Pathol 2004; 35: 290–297.

    CAS  PubMed  Google Scholar 

  13. Bruckheimer EB, Kyprianou N . Apoptosis in prostate carcinogenesis: a growth regulator and a therapeutic target. Cell Tissue Res 2000; 301: 152–162.

    Google Scholar 

  14. Malkin D et al. Germ line p53 mutations in a familial syndrome of breast cancer sarcomas and other neoplasms. Science 1990; 250: 1233–1238.

    CAS  PubMed  Google Scholar 

  15. Hollstein M, Sidransky D, Vogelstein B, Harris CC . p53 mutations in human cancers. Science 1991; 253: 492–495.

    Google Scholar 

  16. Bauer JJ et al. p53 nuclear protein expression is an independent prognostic marker in clinically localized prostate cancer patients undergoing radical prostatectomy. Clin Cancer Res 1995; 1: 1295–1300.

    CAS  PubMed  Google Scholar 

  17. Krupsky T, Petroni GR, Frienson HG, Theodorescu D . Microvessel density, p53, retinoblastoma, and chromogranin A immunohistochemistry as predictors of disease-specific survival following radical prostatectomy for carcinoma of the prostate. Urology 2000; 55: 743–749.

    Google Scholar 

  18. Borner MM et al. Drug-induced apoptosis is not necessarily dependent on macromolecular synthesis of proliferation in the p53-negative human prostate cell line PC3. Cancer Res 1995; 55: 2122–2128.

    CAS  PubMed  Google Scholar 

  19. Kuczyk MA et al. The prognostic value of p53 for long-term and recurrence-free survival following radical prostatectomy. Eur J Cancer 1998; 34: 679–686.

    CAS  PubMed  Google Scholar 

  20. Stapleton AMF et al. Assessment of the biological markers p53, Ki-67, and apoptotic index as predictive indicators of prostate carcinoma recurrence after surgery. Cancer 1998; 82: 168–175.

    CAS  PubMed  Google Scholar 

  21. Myers RB, Oelschlager D, Srivastava S . Accumulation of the p53 protein occurs more frequently in metastatic than in localized prostatic adenocarcinomas. Prostate 1998; 25: 243–248.

    Google Scholar 

  22. Tamboli P, Amin MB, Xu HJ . Immunohistochemical expression of retinoblastoma and p53 tumor suppressor genes in prostatic intraepithelial neoplasia: comparison with prostate adenocarcinoma and benign prostate. Mod Pathol 1998; 11: 247–252.

    CAS  PubMed  Google Scholar 

  23. Bottner M, Krieglstein K, Unsicker K . The transforming growth factor-betas: structure, signaling, and roles in nervous system development and functions. J Neurochem 2000; 75: 2227–2240.

    CAS  PubMed  Google Scholar 

  24. Dünker N, Schuster N, Krieglstein K . Transforming growth factor beta modulates programmed cell death in the retina of the developing chick embryo. Development 2001; 128: 1933–1942.

    PubMed  Google Scholar 

  25. Roberts AB, Wakefield LM . The two faces of transforming growth factor in carcinogenesis. Proc Natl Acad Sci USA 2003; 100: 8621–8623.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Guo Y, Kyprianou N . Restoration of transforming growth factor beta signaling pathway in human prostate cancer suppresses tumorigenicity via induction of caspase-1-mediated apoptosis. Cancer Res 1999; 15: 1366–1371.

    Google Scholar 

  27. Cardillo MR, Petrangeli E, Perracchio L . Transforming growth factor-β expression in prostate neoplasia. Anal Quant Cytol Histol 2000; 22: 1–10.

    CAS  PubMed  Google Scholar 

  28. Massague J, Wotton D . Transcriptional control by the TGF-β/Smad signaling system. EMBO J 2000; 19: 1745–1754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Larisch S et al. A novel mitochondrial septin-like protein, ARTS, mediates apoptosis dependent on its P-loop motif. Nat Cell Biol 2000; 2: 915–921.

    CAS  PubMed  Google Scholar 

  30. Kim I et al. Loss of expression of transforming growth factor-β receptors is associated with poor prognosis in prostate cancer patients. Clin Cancer Res 1998; 4: 1625–1630.

    CAS  PubMed  Google Scholar 

  31. Gold L . The role of transforming growth factor-β (TGF-β) in human cancer. Crit Rev Oncog 1999; 10: 303–360.

    CAS  PubMed  Google Scholar 

  32. Taketo MM, Takatu K . Gastro-intestinal tumorigenesis in Smad4 mutant mice. Cytokine Growth Factor Rev 2000; 11: 147–157.

    CAS  PubMed  Google Scholar 

  33. Brodin G et al. Increased Smad expression and activation are associated with apoptosis in normal and malignant prostate after castration. Cancer Res 1999; 59: 2731–2738.

    CAS  PubMed  Google Scholar 

  34. Coats S et al. A new pathway for mitogen-dependent Cdk2 regulation uncovered in p27Kip1-deficient cells. Curr Biol 1999; 9: 163–173.

    CAS  PubMed  Google Scholar 

  35. Lloyd R et al. p27Kip1: A multifunctional cyclin-dependent kinase inhibitor with prognostic significance in human cancers. Am J Pathol 1999; 154: 313–323.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen J, Willingham T, Shuford M, Nisen PD . Tumor suppression and inhibition of aneuploid cell accumulation in human brain tumor cells by ectopic overexpression of the cyclin-dependent kinase inhibitor p27Kip1. J Clin Invesrt 1996; 97: 1983–1988.

    CAS  Google Scholar 

  37. Guo YP et al. Loss of the cyclin-dependent kinase inhibitor p27Kip1 protein in human prostate cancer correlates with tumor grade. Clin Cancer Res 1997; 3: 2269–2274.

    CAS  PubMed  Google Scholar 

  38. Catzavelos C et al. Decreased levels of the cell-cycle inhibitor p27Kip1 protein: prognostic implications in primary breast cancer. Nat Med 1997; 3: 227–230.

    CAS  PubMed  Google Scholar 

  39. Esposito V et al. Prognostic role of the cyclin-dependent kinase inhibitor p27 in non-small cell lung cancer. Cancer Res 1997; 57: 3381–3385.

    CAS  PubMed  Google Scholar 

  40. Loda M et al. Increased proteasome-dependent degradation of the cyclin-dependent kinase inhibitor p27 in aggressive colorectal carcinomas. Nat Med 1997; 3: 231–234.

    CAS  PubMed  Google Scholar 

  41. Sgambato A et al. Loss of p27Kip1expression correlates with tumor grade and with reduced disease-free survival in primary superficial bladder cancers. Cancer Res 1999; 59: 3245–3250.

    CAS  PubMed  Google Scholar 

  42. Tsihlias J et al. Loss of cyclin-dependent kinase inhibitor p27Kip1 is a novel prognostic factor in localized human prostate adenocarcinoma. Cancer Res 1998; 58: 542–548.

    CAS  PubMed  Google Scholar 

  43. Cote RJ et al. Association of p27Kip1 levels with recurrence and survival in patients with stage C prostate carcinoma. J Natl Cancer Inst 1998; 90: 916–920.

    CAS  PubMed  Google Scholar 

  44. De Marzo et al. Prostate stem cell compartments: expression of the cell cycle inhibitor p27Kip1 in normal hyperplastic and neoplastic cells. Am J Pathol 1998; 153: 911–919.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Carrano AC et al. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol 1999; 1: 193–199.

    CAS  PubMed  Google Scholar 

  46. Sutterluty H et al. p45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells. Nat Cell Biol 1999; 1: 207–214.

    CAS  PubMed  Google Scholar 

  47. Mamillapalli R et al. PTEN regulates the ubiquitin-dependent degradation of the CDK inhibitor p27(KIP1) through the ubiquitin E3 ligase SCF9(SKP2). Curr Biol 2001; 11: 263–367.

    CAS  PubMed  Google Scholar 

  48. Hershko D et al. Inverse relation between levels of p27Kip1 and of its ubiquitin ligase subunit Skp2 in colorectal carcinomas. Cancer 2001; 91: 1745–1751.

    CAS  PubMed  Google Scholar 

  49. Yang G et al. Elevated Skp2 protein expression in human prostate cancer: association with loss of the cyclin-dependent kinase inhibitor p27 and PTEN and with reduced recurrence-free survival. Clin Cancer Res 2002; 8: 3419–3426.

    CAS  PubMed  Google Scholar 

  50. Sakr WA et al. Epidemiology of high-grade prostatic intraepithelial neoplasia. Scand J Urol Nephrol 2000; 205 (Suppl): 11–18.

    Google Scholar 

  51. Sakr WA, Haas GP, Cassin BJ . Frequency of prostatic intraepithelial neoplasia and invasive carcinoma in young males. J Urol 1993; 150: 379–385.

    CAS  PubMed  Google Scholar 

  52. Greenberg N et al. Prostate cancer in a transgenic mouse. Proc Natl Acad Sci USA 1995; 92: 3439–3443.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kasper S et al. Development, progression, and androgen-dependence of prostate tumors in probasin-large T antigen transgenic mice: a model for prostate cancer. Lab Invest 1998; 78: 1–15.

    Google Scholar 

  54. Stanbrough M et al. Prostatic intraepithelial neoplasia in mice expressing an androgen receptor transgene in prostate epithelium. Proc Natl Acad Sci USA 2001; 98: 10823–10828.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. DiGiovanni J et al. Deregulated expression of insulin-like growth factor 1 in prostate epithelium leads to neoplasia in transgenic mice. Proc Natl Acad Sci USA 2000; 97: 3455–3460.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Masumori N et al. A probasin-large T antigen transgenic mouse line develops prostate adenocarcinoma and neuroendocrine carcinoma with metastatic potential. Cancer Res 2001; 61: 2239–2249.

    CAS  PubMed  Google Scholar 

  57. Henshall SM et al. Overexpression of the cell cycle inhibitor p16INK4A in high-grade prostatic intraepithelial neoplasia predicts early relapse in prostate cancer patients. Clin Cancer 2001; 7: 544–550.

    CAS  Google Scholar 

  58. Song ZG et al. Fibroblast growth factor 8 isoform b overexpression in prostate epithelium: a new mouse model for prostatic intraepithelial neoplasial. Cancer Res 2002; 62: 5096–5105.

    CAS  PubMed  Google Scholar 

  59. Gary KL et al. Follow up interval prostate biopsy 3 years after diagnosis of high grade prostatic intraepithelial neoplasia is associated with high likelihood of prostate cancer, independent of change in prostate specific antigen levels. J Urol 2002; 168: 1415–1418.

    Google Scholar 

  60. Park S, Shinohara K, Grossfeld GD, Carroll P . Prostate cancer detection in men with prior high grade prostate intraepithelial neoplasia or atypical prostate biopsy. J Urol 2001; 165: 1409–1414.

    CAS  PubMed  Google Scholar 

  61. Langer JE, Rovner ES, Coleman BG . Strategy for repeat biopsy of patients with prostatic intraepithelial neoplasia detected by prostate needle biopsy. J Urol 1996; 155: 228–232.

    CAS  PubMed  Google Scholar 

  62. Raghow S, Hooshdaran MZ, Katiyar S, Steiner MS . Toremifene prevents prostate cancer in the transgenic adenocarcinoma of mouse prostate model. Cancer Res 2002; 62: 1370–1376.

    CAS  PubMed  Google Scholar 

  63. Cunha GR, Wang YZ, Hayward SW, Risbridger GP . Estrogenic effects on prostatic differentiation and carcinogenesis. Reprod Fertil Dev 2001; 13: 285–296.

    CAS  PubMed  Google Scholar 

  64. Sugiura T et al. Combination chemotherapy with JTE-522, a novel selective cyclooxygenase-2 inhibitor, and cisplatin against gastric cancer cell lines in vitro and in vivo. In vivo 2003; 17: 229–233.

    CAS  PubMed  Google Scholar 

  65. Gataly S, Kerbel R . Therapeutic potential of selective cyclooxygenase-2 inhibitors in the management of tumor angiogenesis. Prog Exp Tumor Res 2003; 37: 179–183.

    Google Scholar 

  66. Yoshida K et al. A COX-2 inhibitor, nimesulide, inhibits chemically-induced rat tongue carcinogenesis through suppression of cell proliferation activity and COX-2 and iNOS expression. Histol Histopathol 2003; 18: 39–48.

    CAS  PubMed  Google Scholar 

  67. Rao CV et al. Chemopreventive properties of a selective inducible nitric oxide synthetase inhibitor in colon carcinogenesis, administered alone or in combination with celecoxib, a selective cyclooxygenase-2 inhibitor. Cancer Res 2002; 62: 165–170.

    CAS  PubMed  Google Scholar 

  68. Guise TA, Yin JJ, Mohammad KS . Role of endothelin-1 in osteoblastic bone metastases. Cancer 2003; 97: 779–784.

    PubMed  Google Scholar 

  69. Kopetz ES, Nelson JB, Carducci MA . Endothelin-1 as a target for therapeutic intervention in prostate cancer. Invest New Drugs 2002; 20: 173–182.

    CAS  PubMed  Google Scholar 

  70. Krzystyniak KL . Current strategies for anticancer chemoprevention and chemoprotection. Acta Pol Pharm 2002; 59: 473–478.

    CAS  PubMed  Google Scholar 

  71. Pollak M, Beamer W, Zhang JC . Insulin-like growth factors and prostate cancer. Cancer Metast Rev 1999; 17: 283–287.

    Google Scholar 

  72. Brawley OW . Hormonal prevention of prostate cancer. Urol Oncol 2003; 21: 67–72.

    CAS  PubMed  Google Scholar 

  73. Satoh T et al. Adenoviral vector-mediated mRTVP-1 gene therapy for prostate cancer. Hum Gene Ther 2003; 14: 91–101.

    CAS  PubMed  Google Scholar 

  74. Nicholson B, Theodorescu D . Molecular therapeutics in prostate cancer. Histol Histopathol 2003; 18: 275–298.

    CAS  PubMed  Google Scholar 

  75. Pantuck AJ et al. New biologicals for prostate cancer prevention: genes, vaccines, and immune-based interventions. Urology 2001; 57 (suppl): 95–99.

    CAS  PubMed  Google Scholar 

  76. Wheeler TM . Influence of irradiation and androgen ablation on prostatic intraepithelial neoplasia. Eur Urol 1996; 30: 261–264.

    CAS  PubMed  Google Scholar 

  77. Trump DL et al. Androgen antagonists: potential role in prostate cancer prevention. Urol 2001; 57 (Suppl): 64–67.

    CAS  PubMed  Google Scholar 

  78. Tolcher AW et al. Other novel agents: rationale and current status as chemopreventive agents. Urol 2001; 57 (Suppl): 86–89.

    CAS  PubMed  Google Scholar 

  79. Steiner MS, Raghow S, Neubauer BL . Selective estrogen receptor modulators for the chemoprevention of prostate cancer. Urol 2001; 57 (Suppl 1): 68–72.

    CAS  PubMed  Google Scholar 

  80. Alberts S, Blute M . Chemoprevention for prostatic carcinoma: the role of flutamide in patients with prostatic intraepithelial neoplasia. Urol 2001; 57 (Suppl 1): 188–190.

    CAS  PubMed  Google Scholar 

  81. Blaji KC, Rabbani F, Tsai H . Effect of neoadjuvant hormonal therapy on prostatic intraepithelial neoplasia and its prognostic significance. J Urol 1999; 162: 753–757.

    Google Scholar 

  82. Montironi R, Santinelli A, Mazzucchelli R . Prostatic intraepithelial neoplasia and prostate cancer. Panminerva Med 2002; 44: 213–220.

    CAS  PubMed  Google Scholar 

  83. van der Kwast TH, Labrie F, Tetu B . Persistence of high-grade prostatic intra-epithelial neoplasia under combined androgen blockade therapy. Hum Pathol 1999; 30: 1503–1507.

    CAS  PubMed  Google Scholar 

  84. Vaillancourt L et al. Effect of neoadjuvant endocrine therapy (combined androgen blockade) on normal prostate and prostatic carcinoma: A randomized study. Am J Surg Pathol 1996; 20: 86–93.

    Google Scholar 

Download references

Acknowledgements

These studies were supported by an NIH R01 Grant (DK-53525-05). We thank Dr Randall Rowland, Chief, Division of Urology, University of Kentucky Medical Center, for enabling the availability of human prostate tissue specimens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Kyprianou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, L., Kyprianou, N. Apoptotic regulators in prostatic intraepithelial neoplasia (PIN): value in prostate cancer detection and prevention. Prostate Cancer Prostatic Dis 8, 7–13 (2005). https://doi.org/10.1038/sj.pcan.4500757

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.pcan.4500757

Keywords

This article is cited by

Search

Quick links