Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Androgen receptor antigen density and S-phase fraction in prostate cancer: a pilot study

Abstract

Purpose: To determine whether quantitative flow cytometric androgen receptor density expression (MFC ratio) in prostate cancer was associated with S-phase fraction.

Methods: Flow cytometry was performed to determine DNA aneuploidy, S-phase fraction, percentage of androgen receptor (AR)-positive cells, and MFC ratio in prostate cancer patients.

Results: MFC ratio showed distinct clustering. Eight patients had a low MFC ratio of 1.78–2.74, while 10 patients had high MFC ratios between 4.99 and 6.48. The S-phase fraction had average values of 11.05 vs 4.92 in tumors with high vs low MFC ratio (P <0.01).

Conclusion: S-phase fraction was significantly higher in tumors with high AR density.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Abbreviations

PSA:

prostate-specific antigen

T stage:

primary tumor stage per American Joint committee TNM recommendations

H&E:

hematoxylin and eosin

FBS:

fetal bovine serum

IgG:

immunoglobulin G

MFC:

mean channel fluorescence

DFS:

disease free survival

AR:

androgen receptors

GS:

Gleason score

TTR:

time to relapse

MAb:

monoclonal antibody

References

  1. Jenster G et al. Domains of the human androgen receptor involved in steroid binding, transcriptional activity and subcellular localization. Mol Endocrinol 1991; 5: 1396–1404.

    Article  CAS  PubMed  Google Scholar 

  2. Klocker H et al. Androgen receptor mutations in prostate cancer. In: Wirth M, Altwein JE, Schmitz-Drager B, Kuptz S (eds). Molecular Biology of Prostate Cancer. Walter de Gruyter, New York, 1998, pp 81–88.

    Google Scholar 

  3. Kazemi-Esfarjani P, Trifiro MA, Pinksy L . Evidence for a repressive function of the long polyglutamine tract in the human androgen receptor: possible pathogenetic relevance for the CAG expanded neuronopathies. Hum Mol Genet 1995; 4: 523–527.

    Article  CAS  PubMed  Google Scholar 

  4. Suzuki H . Androgen receptor gene mutations in human prostate cancer. J Steroid Biochem Mol Biol 1993; 46: 759–765.

    Article  CAS  PubMed  Google Scholar 

  5. Suzuki H et al. Codon 877 mutation in the androgen receptor gene in advanced prostate cancer: relation to antiandrogen withdrawal syndrome. Prostate 1996; 29: 153–161.

    Article  CAS  PubMed  Google Scholar 

  6. Nam R et al. Significance of the CAG repeat polymorphism of the androgen receptor gene in prostate cancer progression. Invest Urol 2000; 164: 567–572.

    CAS  Google Scholar 

  7. Gil-Diez de Medina S et al. Modulation of cytokeratin subtype, EGF receptor, and androgen receptor expression during progression of prostate cancer. Hum Pathol 1998; 29: 1005–1012.

    Article  CAS  PubMed  Google Scholar 

  8. Watanabe M et al. Genetic alteration in androgen receptor gene in Japanese human prostate cancer. Jpn J Clin Oncol 1997; 27: 389–393.

    Article  CAS  PubMed  Google Scholar 

  9. Noordzij MA et al. The prognostic value of pretreatment expression of androgen receptor & bcl-2 in hormonally treated prostate cancer patients. J Urol 1997; 158: 1880–1884.

    Article  CAS  PubMed  Google Scholar 

  10. Giovanucci E et al. The CAG repeat within the androgen receptor gene and its relationship to prostate cancer. Proc Natl Acad Sci USA 1997; 94: 3320–3323.

    Article  Google Scholar 

  11. Ingles SA et al. Association of prostate cancer risk with genetic polmorhisms in vitamin D receptors and androgen receptor. J Natl Cancer Inst 1997; 89: 166–170.

    Article  CAS  PubMed  Google Scholar 

  12. Pertschuk LP et al. Immunocytochemical assay for androgen receptors in prostate cancer: a prospective study of 63 cases with long term follow-up. Ann Surg Oncol 1994; 1: 495–503.

    Article  CAS  PubMed  Google Scholar 

  13. Pertschuk LP et al. Immunostaining for prostate cancer androgen receptor in paraffin identifies a subset of men with a poor prognosis. Lab Invest 1995; 73: 302–305.

    CAS  PubMed  Google Scholar 

  14. Sadi MV, Walsh PC, Barrack ER . Immunohistochemical study of androgen receptors in metastatic prostate cancer. Comparison of receptor content and response to hormonal therapy. Cancer 1991; 67: 3057–3064.

    Article  CAS  PubMed  Google Scholar 

  15. Sadi MV, Barrack ER . Androgen receptors & growth fraction in metastatic prostate cancer as predictors of time to tumor progression after hormonal therapy. Cancer Surveys 1991; 11: 195–215.

    CAS  PubMed  Google Scholar 

  16. De Winter JA et al. Androgen receptor heterogeneity in human prostatic carcinomas visualized by immunohistochemistry. J Pathol 1990; 160: 329–332.

    Article  CAS  PubMed  Google Scholar 

  17. Emtage LA, Dunn PJ, Rowse AD . Androgen & progesterone receptor status in benign & neoplastic prostate disease. Study of prevalence and influence on time to progression and survival in prostate cancer treated by hormone manipulation. Br J Urol 1989; 63: 627–633.

    Article  CAS  PubMed  Google Scholar 

  18. Prins GS, Sklarew RJ, Pertschuk LP . Image analysis of androgen receptor immunostaining in prostate cancer accurately predicts response to hormonal therapy. J Urol 1998; 159: 641–649.

    Article  CAS  PubMed  Google Scholar 

  19. Takeda H et al. Androgen receptor content of prostate carcinoma cells estimated by immunohistochemistry is related to prognosis of patients with stage D2 prostate cancer. Cancer 1996; 77: 934–940.

    Article  CAS  PubMed  Google Scholar 

  20. Kushlinskii NE et al. The prognostic significance of determining androgen receptors in prostatic cancer. Urol Nefrol 1993; 1: 7–10.

    Google Scholar 

  21. Van Aubel OG et al. Circulating testosterone, prostatic nuclear androgen receptor and time to progression in patients with metastatic disease of the prostate treated by orchiectomy. Urol Res 1989; 17: 99–102.

    Article  CAS  PubMed  Google Scholar 

  22. Benson Jr RC, Gorman PA, Holicky EL, Veneziale CM . Relationship between androgen receptor binding activity in human prostate cancer and clinical response to endocrine therapy. Cancer 1987; 59: 1599–1606.

    Article  PubMed  Google Scholar 

  23. Ennis RD et al. Length of the CAG repeat polymorphism within the androgen receptor gene predicts biochemical (PSA) complete response to neo-adjuvant androgen deprivation in a prospective clinical trial. Int J Radiat Oncol Biol Phys 1999; 45: 356 (Abstract).

    Article  Google Scholar 

  24. Kuil CW, Brinkman AO . Androgens, antiandrogens & androgen receptor abnormalities. Eur Urol 1996; 29: 78–82.

    Article  PubMed  Google Scholar 

  25. Redkar AA, Krishan A . Flow cytometric analysis of estrogen, progesterone receptor expression and DNA content in formalin-fixed, paraffin-embedded human breast tumors. Cytometry 1999; 38: 61–69.

    Article  CAS  PubMed  Google Scholar 

  26. Krishan A et al. Flow cytometric analysis of andrigen receptor expression in human prostate tumors and benign tissues. Clin Cancer Res 2000; 6: 1922–1930.

    CAS  PubMed  Google Scholar 

  27. Kaplan EL, Meier P . Nonparametric estimation from incomplete observations. J Am Stat Assoc 1958; 53: 457–481.

    Article  Google Scholar 

  28. Roach M et al. Four prognostic groups predict long-term survival from prostate cancer following radiotherapy alone on Radiation Therapy Oncology Group clinical trials. Int J Radiat Oncol Biol Phys 2000; 47: 609–615.

    Article  CAS  PubMed  Google Scholar 

  29. Segawa N et al. Prognostic significance of neuroendocrine differentiation, proliferation activity and androgen receptor expression in prostate cancer. Pathol Int 2001; 51: 452–459.

    Article  CAS  PubMed  Google Scholar 

  30. Klocker H et al. Androgen receptor alterations in prostatic carcinoma. Prostate 1994; 25: 266–273.

    Article  CAS  PubMed  Google Scholar 

  31. Magi-Galluzzi C et al. Heterogeneity of androgen receptor contenet in advanced prostate cancer. Mod Pathol 1997; 10: 839–845.

    CAS  PubMed  Google Scholar 

  32. Vesalainen S et al. Progression and survival in prostatic adenocarcinoma: a comparison of clinical stage, Gleason grade, S-phase fraction and DNA ploidy. Br J Cancer 1994; 70: 309–314.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Eskelinen M et al. DNA ploidy, S phase fraction and G2 fraction as prognostic determinants in prostatic adenocarcinoma. Eur Urol 1991; 20: 62–66.

    Article  CAS  PubMed  Google Scholar 

  34. Romics I et al. DNA content of prostatic cancer measured by flow cytometry in patients undergoing radical prostatectomy. Anticancer Res 1995; 15: 1131–1134.

    CAS  PubMed  Google Scholar 

  35. Visakorpi T et al. Flow cytometric analysis of DNA ploidy and S-phase fraction from prostate carcinomas: implications for prognosis and response to endocrine therapy. Br J Cancer 1991; 64: 578–582.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Astrom L et al. S-phase fraction related to prognosis in localized prostate cancer. No specific significance of chromosome 7 gain or deletion of 7q31.1. Int J Cancer 1998; 79: 553–559.

    Article  CAS  PubMed  Google Scholar 

  37. Mora LB et al. Stage B prostate cancer: Correlation of DNA ploidy analysis with histological and clinical parameters. Cancer Control 199; 60: 587–591.

    Google Scholar 

  38. Ahlgren G, Flakmer U, Gadaleanu V, Abrahamsson PA . Evaluation of DNA ploidy combined with a cytometric proliferation index of imprints from core needle biopsies in prostate cancer. Eur Urol 1999; 36: 314–319.

    Article  CAS  PubMed  Google Scholar 

  39. Centeno BA et al. Flow cytometric analysis of DNA ploidy, percent S-phase fraction, and total proliferative fraction as prognostic indicators of local control and survival following radiation therapy for prostate carcinoma. Int J Radiat Oncol Biol Phys 1994; 30: 309–315.

    Article  CAS  PubMed  Google Scholar 

  40. Koivisto P . Aneuploidy and rapid cell proliferation in recurrent prostate cancers with androgen receptor gene amplification. Prostate Cancer Prostatic Dis 1997; 1: 21–25.

    Article  CAS  PubMed  Google Scholar 

  41. Kaltz-Wittmer C et al. FISH Analysis of gene aberrations (MYC, CCND1, ERBB2, RB and AR) in advanced prostatic carcinomas before and after androgen deprivation therapy. Lab Investig 2000; 80: 1455–1464.

    Article  CAS  PubMed  Google Scholar 

  42. Henshall SM et al. Altered expression of androgen receptor in malignant epithelium and adjacent stroma is associated with early relapse in prostate cancer. Cancer Res 2001; 61: 423–427.

    CAS  PubMed  Google Scholar 

  43. Pilepich MV et al. Androgen deprivation with radiation therapy compared with radiation therapy alone for locally advanced prostatic adenocarcinoma: A randomized comparative trial of the Radiation Therapy Oncology Group. Urology 1995; 45: 616–623.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Abdel-Wahab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdel-Wahab, M., Krishan, A., Milikowski, C. et al. Androgen receptor antigen density and S-phase fraction in prostate cancer: a pilot study. Prostate Cancer Prostatic Dis 6, 294–300 (2003). https://doi.org/10.1038/sj.pcan.4500672

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.pcan.4500672

Keywords

This article is cited by

Search

Quick links