
MATHEMATICS

Some assembly needed
Ian Stewart

Origami, the ancient Japanese art of paper folding, is mathematically 
deeper than it looks. Delving into its complexities allows the construction 
of elaborate and useful structures from simple, flat templates.   

Saving space is an imperative in commerce, 
engineering and the structure of living crea-
tures. Furniture and garden equipment come 
in flat-packs to save storage space in the ware-
house and the delivery van — and, it must be 
said, to make the purchaser do all that time-
consuming work of assembly. The solar pan-
els that provide satellites with electrical power 
have to be folded so that they fit into the bay 
of a space shuttle. And who could fail to be 
entranced by the emergence of a butterfly from 
a pupa, as pulsing blood inflates bedraggled, 
folded tissue into glorious, gaudy wings?

Over the past two decades, a dedicated 
band of mathematicians, engineers and 
computer scientists has been developing 
a new branch of mathematics to under-
stand the science of folding objects flat. 
In a contribution1 to a recent confer-
ence2 that exemplifies these efforts, 
Taketoshi Nojima details the deriva-
tion of a surprising range of geo-
metrical forms from a flat sheet of 
material, including “tubes, conical 
shells, circular membranes, mov-
able/shape-changeable models 
and highly rigid 3-D cores”.

Researchers’ inspiration 
in this area derives from 
two quite different sources: 
‘biomimetics’, the techno-
logical mimicry of biological 
pro cesses and structures, and the 
ancient Japanese art of ori-
gami. The results have been 
intriguing and ingenious, and 
have already found applications in maps, food 
packaging, folding drinks containers, car air-
bags and spacecraft antennas. Among future 
applications could be foldable plastic bottles, 
lightweight skeletons for aerospace structures 
and compact light-sails for interplanetary 
travel. The mathematics developed along the 
way could also feed back into a better under-
standing of nature’s own origami: the growth 
and development of leaves, buds and insect 
wings.

Origami’s potential as a source of mathemati-
cal problems has been recognized for some 
time. Its patterns of folds can construct geomet-
ric forms beyond those possible with Euclid’s 
traditional rule and compass, such as regular 
seven-sided and nine-sided polygons. The basic 
problem of origami is the flat-folding problem: 
given a diagram of fold lines on a flat sheet of 
paper, can the paper be folded into a flat shape 

Figure 2 | Industrial application of origami. 
The mathematical folding schemes developed 
by Nojima1 can be used to stamp out tiled 
patterns from sheet metal, which can then be 
folded and welded to form rigid, lightweight 
materials that might be of use, for example, in 
the aerospace industry.
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mathematical: tiling patterns, or ‘tessellations’, 
in the plane. Clever folding processes based on 
tessellations lead to rigid, lightweight materials 
of a ‘honeycomb’ type (Fig. 2). Some of these 
can be stamped out from sheet metal, folded 
and then welded so that they retain the folded 
shape, providing a simple and reliable way to 
manufacture apparently complicated materi-
als. The work1 analyses the precise geometric 
conditions required for these constructions, 
putting them on a solid mathematical basis. It 
also pays attention to practical issues, such as 
the thickness of the sheet being folded.

The potential of these simple but ingenious 
ideas is huge. Complex three-dimensional 
forms could arise from flat, stamped sheets 
of ‘shape memory’ materials merely by heat-
ing them. They could also be made from flat 
sheets of rubber and inflated, a usefully revers-
ible construction technique. Honeycomb cores 
are common in the aerospace industry for their 
rigidity and lightness, and any new, simple 
manufacturing process is likely to prove valu-
able. Origami structures, being lightweight and 
compact, are ‘green’: they can easily be recycled, 
and even if they’re not, the amount of rubbish 
they create is reduced.

Nojima ends with a look to the future. He 
envisages the creation of a new discipline, 
which I am tempted to name ‘origamics’. This 
would be a combination of engineering, math-
ematics and biology, and could lead to sig-
nificant progress in a variety of fields. Nojima 
himself cites “plastic buckling, biomimetic 
robotic modelings, movable origami mod-
eling for education or edutainment…[and] 
new interpretations of bionic mechanics.” He 
could well be right. ■ 
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without introducing any further creases? 
In 1996, two computer scientists, Barry 

Hayes of Placeware, Inc. and Marshall Bern at 
Xerox’s Palo Alto Research Center, proved that 
this question is mathematically equivalent to a 
famous problem in logic, the 3-SAT problem3. 
This is the ‘satisfiability problem’, and is an 
example of an NP-hard problem, meaning that 
the running time required for any algorithm to 
solve the problem grows rapidly as the problem 
becomes more complex, so that the calculation 
takes too long to be feasible. The satisfiability 
problem asks the question whether there is 

some assignment of values for boolean 
expressions — combinations of true-or-
false logical statements — built from 
simple three-component formulas such 
that the entire expression returns the 
value ‘true’. Mathematically, therefore, 
origami is deeper than it looks.

The same is true biologi-
cally, and this is where Nojima’s 
research comes in. By study-
ing natural folding patterns, 

especially those associated 
with the growth of plants, 
he has devised methods for 
folding remarkable three-
dimensional shapes from 
flat sheets of lightweight 
material. For example, one 

class of structures derives 
from the well-known occur-

rence of Fibonacci numbers 
(the sequence of numbers in 
which each is the sum of the 

two preceding numbers: 0, 1, 1, 2, 3, 5, 8, 13, 21, 
34, 55 and so on) in various cylindrical or heli-
cal plants, such as pine cones and pineapples. 
The scales of a pine cone, for instance, form two 
families of helices, one twisting clockwise and 
the other anticlockwise. The numbers of heli-
ces in these families are two adjacent Fibonacci 
numbers, such as 8 and 13. Folding patterns 
with a similar form can be used to create rigid 
helical structures from flat sheets, which are 
rolled into a cylinder and then folded. If the 
sheet is first formed into a cone, collapsible 
conical structures can also be made (Fig. 1).

This idea is only the beginning. Far more 
elaborate shapes can also be constructed by 
origami methods. Often these resemble bio-
logical forms — flowers, horns, shells. Some 
of Nojima’s patterns are inspired by the buds of 
the morning glory and the folds in an earwig’s 
wings. Another source of inspiration is purely 

Figure 1 | Natural inspiration 
— Nojima’s1 origami pine cone.
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