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chaos on a molecular level quite plausible,
the observed macroscopic disorder cannot
be taken as direct evidence of microscopic
chaos. The effectively infinite number of
molecules in a fluid can generate the same
macroscopic disorder without any intrinsic
instability, so brownian motion can be
derived for systems that would usually be
called non-chaotic, such as a tracer particle
in a non-interacting ideal gas. All that is
needed for diffusion is ‘molecular chaos’ in
the sense of Boltzmann, that is, the absence
of observable correlations in the motion of
single molecules.

Part of the confusion is due to the lack of
a unique definition of microscopic chaos for
systems with an infinite number of degrees
of freedom. Gaspard et al.' introduced the
term by extrapolating from finite dimen-
sional dynamical systems for which chaos is
well defined: on average, initially close states
separate exponentially when time tends to
infinity. The Lyapunov exponent, or rate of
separation, is independent of the particular
method used to measure ‘closeness’. How-
ever, the ideas of diffusion and brownian
motion involve infinitely many degrees of
freedom. In this thermodynamic limit, Lya-
punov exponents are no longer independent
of the metric. The large system limit of a
finite non-chaotic system will therefore
remain non-chaotic with one particular
metric and become chaotic with another.

We can illustrate this point by using an
example® introduced in the context of cel-
lular automata. Consider two states
X=(.0.X_p X_p, X Xpp X)) and y=(...y_,,
Y_1 Yo V1> Vo-..) of a one-dimensional bi-
infinite lattice system. If the distance
between x and y is defined by
d(Xy) = max|x;— y|, it can grow expo-
nentially only if the local differences do.
This is what is usually meant by ‘chaos’ and
what Gaspard et al.' meant by ‘microscopic
chaos. This mechanism is absent in the
thermodynamic limit of finite non-chaotic
systems, so the limit could also be said to be
non-chaotic’”®. However, the distance
dop(xy) = iji_ yle™ can also show
exponential divergence if an initially distant
perturbation moves towards the origin
without growing®. When observing a local-
ized tracer, as Gaspard et al.' did, the latter
choice may be the more appropriate.

In finite dimensional dynamical systems,
chaos arises as a result of the defocusing
microscopic dynamics. Positive entropy is
generated by the initially insignificant digits
of the initial condition brought forth by the
dynamics. At the thermodynamic limit, a
different mechanism also exists: perturba-
tions coming from distant regions kick the
tracer particle once and move away again to
infinity. The entropy is positive because of
information stored in remote parts of the
initial condition. Suitable Lyapunov expo-
nents® can be defined for this case as well.

876

To resolve the confusion, we propose
letting the system size tend to infinity first,
before the observation time'”. A system
observed in a particular metric w is then
described as u-chaotic when we find a posi-
tive Lyapunov exponent using this metric.
Gaspard et al' had in mind the type of
chaos that is detectable with the metric d,,,
and arises from a local instability. But they
fall short of providing experimental evi-
dence for this specific type of chaos.

Peter Grassberger, Thomas Schreiber
Department of Physics, University of Wuppertal,
42097 Wuppertal, Germany

1. Gaspard, P. et al. Nature 394, 865-868 (1998).

2. Gaspard, P. & Wang, X.-J. Phys. Rep. 235, 291-345 (1993).

3. Diirr, D. & Spohn, H. Nature 394, 831-833 (1998).

4. Schewe, E. & Stein, B. Physics News Update
<http://www.aip.org/enews/physnews/1998/split/pnu389-3.htm>
(1998).

. Rauner, M. Physik. Blitt. 54, 1001 (1998).

. Wolfram, S. Physica D 10, 1-35 (1984).

. Crutchfield, . & Kaneko, K. Phys. Rev. Lett. 60, 2715-2718 (1988).

. Ershov, S. V. & Potapov, A. B. Phys. Lett. A 167, 60—64 (1992).

. Politi, A., Livi, R., Oppo, G.-L. & Kapral, R. Europhys. Lett. 22,
571-576 (1993).

10.Sinai, Y. G. Int. J. Bifurcat. Chaos 6,1137-1142 (1996).

© % N W

Gaspard et al. reply — We presented experi-
mental evidence for the existence of micro-
scopic chaos in the mesoscopic motion of a
brownian particle in solution. We used
standard techniques to analyse long trajec-
tories of a brownian particle and inferred a
dynamical entropy from this analysis. We
showed that this dynamical entropy can be
accessed experimentally by measuring mul-
tiple-time correlation functions for the par-
ticle. The dynamical entropy was then used
to provide a positive lower bound for the
sum of the Lyapunov exponents for the
underlying deterministic dynamical system
composed of the fluid and brownian parti-
cles. We concluded that the positive
dynamical entropy, obtained experimen-
tally, was evidence for the existence of posi-
tive Lyapunov exponents in the underlying
dynamics, and hence for the existence of
microscopic chaos generated by a dynami-
cal instability.

Dettmann et al. and Grassberger and
Schreiber argue that there may be other
explanations. There is no doubt that a posi-
tive dynamical entropy could be generated
by mechanisms other than a local intrinsic,
dynamical instability. Illustrative models
include the Rayleigh flight of a tracer particle
in a non-interacting ideal gas, the motion of
an impurity in a harmonic crystal, and the
motion of the wind particle in the wind-tree
model. In these models, an external pseudo-
random generator must be involved at some
stage of the simulation of the dynamics,
leading to a positive dynamical entropy
without a local dynamical instability.

In the Rayleigh flight and the harmonic
crystal, randomness is generated repetitively
by the new particles or waves continuously
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coming from infinity. In the wind-tree
model, the scatterers are randomly located
by using a pseudorandom generator before
the simulation of the time evolution. As the
wind particle collides with a new scatterer,
it picks up new information on the location
of this scatterer and the information
recorded on this trajectory grows as a
result. However, if the square scatterers
formed a regular lattice, this growth would
stop and the dynamical entropy would van-
ish. In contrast, for circular disks, as in the
Lorentz gas, the dynamical entropy is
always positive whether the lattice is regular
or not. The apparent dynamical random-
ness of the wind-tree model therefore has
its origin in the structural disorder of the
model.

The models mentioned by Dettmann et
al. and Grassberger and Schreiber fail to
capture an essential feature of brownian
motion: that the diffusion coefficient is
inversely proportional to the viscosity of
the fluid surrounding the brownian parti-
cle. The viscosity of the fluid is absent in
models in which the surrounding particles
either do not move or have no interaction
or only harmonic interactions. These mod-
els are therefore not plausible for the inter-
pretation of our experiment'.

However, if the interactions between
surrounding particles are generic and non-
linear, the viscosity can be positive and the
dependence of the diffusion coefficient on
the viscosity can be explained. In such sys-
tems with nonlinearly interacting particles,
numerical and analytical studies have shown
that intrinsic local instability is the domi-
nant mechanism for generating dynamical
randomness, and no external pseudoran-
dom generator is needed™’. Standard mod-
els of brownian motion are of this kind and
develop chaotic dynamics with a full spec-
trum of positive Lyapunov exponents.

For these reasons, we believe that our
explanation in terms of a randomness self-
generated by the dynamical instability is
the most plausible one for this experiment.
We hope that further experiments will be
able to distinguish more directly between
different regimes of random behaviour in
systems with a large number of particles,
and so provide further evidence of micro-
scopic chaos.
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