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is strikingly similar to that for the brownian
particle (Fig. 2 of Gaspard et al.). Our sub-
sequent analysis parallels that of Gaspard et
al.1, where further details may be found.

The microscopic ‘chaoticity’ is deter-
mined by estimating the Kolmogorov–Sinai
entropy hKS as described4,5 by using the
information entropy K(n, e, t) obtained
from the frequency with which the particle
retraces part of its (previous) trajectory
within a distance e, for n measurements
spaced at a time interval t. As hKS here
equals the sum of the positive Lyapunov
exponents, the determination of a positive
hKS would imply microscopic chaos. Like
Gaspard et al.1, we find that K grows linearly
with time (Fig. 1c), giving a positive (non-
zero) bound on hKS (Fig. 1d). Indeed, Fig.
1b–d for a microscopically non-chaotic
model are virtually identical to the corre-
sponding Figs 2–4 of Gaspard et al. Thus,
Gaspard et al. did not prove the presence of
microscopic chaos in brownian motion.

The algorithm of refs 4,5 as applied here
cannot determine the microscopic chaoticity
of brownian motion because the time inter-
val between measurements, 1/60 s (ref. 1), is
so much larger than the microscopic
timescale determined by the inverse colli-
sion frequency in a liquid, which is approxi-
mately 10112 s. A decisive determination of
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microscopic chaos would require a time
interval t of the same order as characteristic
microscopic timescales.
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Figure 1 Brownian motion results of Gaspard et al.1 numerically reproduced from the non-chaotic Ehrenfest wind-tree model (notation as

in ref. 1). The square scatterers have a diagonal of two length units and fill half the area considered. The particle moves with unit velocity

in four possible directions. The position on its trajectory is determined for 106 points separated by one time unit. a, Two nearby trajecto-

ries split only at a corner C; no exponential separation occurs (see Fig. 1 of ref. 1). b, A typical trajectory is diffusive with an v12 power

spectrum (inset), where v is the angular frequency (see Fig. 2 of ref. 1). c, The information entropy K(n, e, t) for t41 and

e40.31621.21m, where m is an integer running from 0 to 25 (see Fig. 3 of ref. 1). d, The envelope of the slopes of these K curves,

h(e, t) appears to imply a positive (chaotic) hKS for the Ehrenfest model, as for brownian motion (see Fig. 4 of ref. 1).

Statistical mechanics

Microscopic chaos from
brownian motion?
Gaspard et al.1 have analysed a time series 
of the positions of a brownian particle in a
liquid, and claimed that it provides empiri-
cal evidence for microscopic chaos on a
molecular scale. An accompanying com-
ment2 emphasized the fundamental nature
of the experiment. Here we show that virtu-
ally identical results can be obtained by
analysing a corresponding numerical time
series of a particle in a manifestly micro-
scopically non-chaotic system.

Like Gaspard et al.1, we have analysed
the position of a single particle colliding
with many others. We used the Ehrenfest
wind-tree model3, in which the point-like
(‘wind’) particle moves in a plane, colliding
with randomly placed, fixed square scatter-
ers (‘trees’) (Fig. 1a). We chose this model
because collisions with the flat sides of the
squares do not lead to exponential separa-
tion of corresponding points on initially
nearby trajectories, so there are no positive
Lyapunov exponents, which are characteris-
tic of microscopic chaos. In contrast, Gas-
pard et al.1 used a Lorentz model as being
similar to brownian motion, a model in
which the squares are replaced by hard, cir-
cular discs. This does exhibit exponential
separation of nearby trajectories, leading to
a positive Lyapunov exponent and hence
microscopic chaos.

Nevertheless, despite being non-chaotic,
the Ehrenfest model reproduces all the
results presented by Gaspard et al.1. The
particle trajectory segment shown in Fig. 1b
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Gaspard et al.1 have shown that the posi-
tion of a brownian particle behaves like a
Wiener process with positive resolution-
dependent entropy2. More surprisingly3–5,
they claim that this observation provides
proof of ‘microscopic chaos’, a term they
illustrate by examples of finite dimensional
dynamical systems which are intrinsically
unstable. We do not believe that they have
provided evidence for microscopic chaos in
the sense in which they use the term.

Although the recent literature finds such
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To resolve the confusion, we propose
letting the system size tend to infinity first,
before the observation time10. A system
observed in a particular metric m is then
described as m-chaotic when we find a posi-
tive Lyapunov exponent using this metric.
Gaspard et al.1 had in mind the type of
chaos that is detectable with the metric dmax

and arises from a local instability. But they
fall short of providing experimental evi-
dence for this specific type of chaos.
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42097 Wuppertal, Germany
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Gaspard et al. reply — We presented experi-
mental evidence for the existence of micro-
scopic chaos in the mesoscopic motion of a
brownian particle in solution. We used
standard techniques to analyse long trajec-
tories of a brownian particle and inferred a
dynamical entropy from this analysis. We
showed that this dynamical entropy can be
accessed experimentally by measuring mul-
tiple-time correlation functions for the par-
ticle. The dynamical entropy was then used
to provide a positive lower bound for the
sum of the Lyapunov exponents for the
underlying deterministic dynamical system
composed of the fluid and brownian parti-
cles. We concluded that the positive
dynamical entropy, obtained experimen-
tally, was evidence for the existence of posi-
tive Lyapunov exponents in the underlying
dynamics, and hence for the existence of
microscopic chaos generated by a dynami-
cal instability.

Dettmann et al. and Grassberger and
Schreiber argue that there may be other
explanations. There is no doubt that a posi-
tive dynamical entropy could be generated
by mechanisms other than a local intrinsic,
dynamical instability. Illustrative models
include the Rayleigh flight of a tracer particle
in a non-interacting ideal gas, the motion of
an impurity in a harmonic crystal, and the
motion of the wind particle in the wind-tree
model. In these models, an external pseudo-
random generator must be involved at some
stage of the simulation of the dynamics,
leading to a positive dynamical entropy
without a local dynamical instability.

In the Rayleigh flight and the harmonic
crystal, randomness is generated repetitively
by the new particles or waves continuously

brief communications

876 NATURE | VOL 401 | 28 OCTOBER 1999 | www.nature.com

coming from infinity. In the wind-tree
model, the scatterers are randomly located
by using a pseudorandom generator before
the simulation of the time evolution. As the
wind particle collides with a new scatterer,
it picks up new information on the location
of this scatterer and the information
recorded on this trajectory grows as a
result. However, if the square scatterers
formed a regular lattice, this growth would
stop and the dynamical entropy would van-
ish. In contrast, for circular disks, as in the
Lorentz gas, the dynamical entropy is
always positive whether the lattice is regular
or not. The apparent dynamical random-
ness of the wind-tree model therefore has
its origin in the structural disorder of the
model.

The models mentioned by Dettmann et
al. and Grassberger and Schreiber fail to
capture an essential feature of brownian
motion: that the diffusion coefficient is
inversely proportional to the viscosity of
the fluid surrounding the brownian parti-
cle. The viscosity of the fluid is absent in
models in which the surrounding particles
either do not move or have no interaction
or only harmonic interactions. These mod-
els are therefore not plausible for the inter-
pretation of our experiment1. 

However, if the interactions between
surrounding particles are generic and non-
linear, the viscosity can be positive and the
dependence of the diffusion coefficient on
the viscosity can be explained. In such sys-
tems with nonlinearly interacting particles,
numerical and analytical studies have shown
that intrinsic local instability is the domi-
nant mechanism for generating dynamical
randomness, and no external pseudoran-
dom generator is needed2,3. Standard mod-
els of brownian motion are of this kind and
develop chaotic dynamics with a full spec-
trum of positive Lyapunov exponents.

For these reasons, we believe that our
explanation in terms of a randomness self-
generated by the dynamical instability is
the most plausible one for this experiment.
We hope that further experiments will be
able to distinguish more directly between
different regimes of random behaviour in
systems with a large number of particles,
and so provide further evidence of micro-
scopic chaos.
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chaos on a molecular level quite plausible,
the observed macroscopic disorder cannot
be taken as direct evidence of microscopic
chaos. The effectively infinite number of
molecules in a fluid can generate the same
macroscopic disorder without any intrinsic
instability, so brownian motion can be
derived for systems that would usually be
called non-chaotic, such as a tracer particle
in a non-interacting ideal gas. All that is
needed for diffusion is ‘molecular chaos’ in
the sense of Boltzmann, that is, the absence
of observable correlations in the motion of
single molecules.

Part of the confusion is due to the lack of
a unique definition of microscopic chaos for
systems with an infinite number of degrees
of freedom. Gaspard et al.1 introduced the
term by extrapolating from finite dimen-
sional dynamical systems for which chaos is
well defined: on average, initially close states
separate exponentially when time tends to
infinity. The Lyapunov exponent, or rate of
separation, is independent of the particular
method used to measure ‘closeness’. How-
ever, the ideas of diffusion and brownian
motion involve infinitely many degrees of
freedom. In this thermodynamic limit, Lya-
punov exponents are no longer independent
of the metric. The large system limit of a
finite non-chaotic system will therefore
remain non-chaotic with one particular
metric and become chaotic with another.

We can illustrate this point by using an
example6 introduced in the context of cel-
lular automata. Consider two states
x4(…x12, x11, x0, x1, x2…) and y4(…y12,
y11, y0, y1, y2…) of a one-dimensional bi-
infinite lattice system. If the distance
between x and y is defined by
dmax(x,y)4maxiäxi1yiä, it can grow expo-
nentially only if the local differences do.
This is what is usually meant by ‘chaos’, and
what Gaspard et al.1 meant by ‘microscopic
chaos’. This mechanism is absent in the
thermodynamic limit of finite non-chaotic
systems, so the limit could also be said to be
non-chaotic7–9. However, the distance
dexp(x,y)4^i

äxi1yiäe
1äiä can also show

exponential divergence if an initially distant
perturbation moves towards the origin
without growing6. When observing a local-
ized tracer, as Gaspard et al.1 did, the latter
choice may be the more appropriate.

In finite dimensional dynamical systems,
chaos arises as a result of the defocusing
microscopic dynamics. Positive entropy is
generated by the initially insignificant digits
of the initial condition brought forth by the
dynamics. At the thermodynamic limit, a
different mechanism also exists: perturba-
tions coming from distant regions kick the
tracer particle once and move away again to
infinity. The entropy is positive because of
information stored in remote parts of the
initial condition. Suitable Lyapunov expo-
nents6 can be defined for this case as well.
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