Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes

Abstract

Specialized epithelia known as M cells overlying the lymphoid follicles of Peyer's patches are important in the mucosal immune system, but also provide a portal of entry for pathogens such as Salmonella typhimurium, Mycobacterium bovis, Shigella flexneri, Yersinia enterocolitica and reoviruses1,2,3,4. Penetration of intestinal M cells and epithelial cells by Salmonella typhimurium requires the invasion genes of Salmonella Pathogenicity Island 1 (SPI1)3,5,6,7,8,9. SPI1-deficient S. typhimurium strains gain access to the spleen following oral administration and cause lethal infection in mice5 without invading M cells3,9 or localizing in Peyer's patches10, which indicates that Salmonella uses an alternative strategy to disseminate from the gastrointestinal tract. Here we report that Salmonella is transported from the gastrointestinal tract to the bloodstream by CD18-expressing phagocytes, and that CD18-deficient mice are resistant to dissemination of Salmonella to the liver and spleen after oral administration. This CD18-dependent pathway of extraintestinal dissemination may be important for the development of systemic immunity to gastrointestinal pathogens, because oral challenge with SPI1-deficient S. typhimurium elicits a specific systemic IgG humoral immune response, despite an inability to stimulate production of specific mucosal IgA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CD18-dependent dissemination of invasion-deficient S. typhimurium from the gastrointestinal tract to systemic organs.
Figure 2: CD18-expressing cells of monocyte–macrophage lineage mediate extraintestinal dissemination of invasion-deficient S. typhimurium.
Figure 3: SPI1 invasion genes are required for the elicitation of mucosal but not systemic immune responses to S. typhimurium.
Figure 4: Model for functional and anatomical compartmentalization of the immune response to Salmonella.

Similar content being viewed by others

References

  1. Wolf,J. L. et al. Intestinal M cells: a pathway for entry of reovirus into the host. Science 212, 471–472 (1981).

    Article  ADS  CAS  Google Scholar 

  2. Wassef,J. S., Keren,D. F. & Mailloux,J. L. Role of M cells in initial antigen uptake and in ulcer formation in the rabbit intestinal loop model of shigellosis. Infect. Immun. 57, 858–863 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Jones,B. D., Ghori,N. & Falkow,S. Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer's patches. J. Exp. Med. 180, 15–23 (1994).

    Article  CAS  Google Scholar 

  4. Neutra,M. R., Frey,A. & Kraehenguhl,J. P. Epithelial M cells: gateways for mucosal infection and immunization. Cell 86, 345–348 (1996).

    Article  CAS  Google Scholar 

  5. Galan,J. E. & Curtiss,R. III . Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proc. Natl Acad. Sci. USA 86, 6383–6387 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Lee,C. A., Jones,B. D. & Falkow,S. Identification of a Salmonella typhimurium invasion locus by selection for hyperinvasive mutants. Proc. Natl Acad. Sci. USA 89, 1847–1851 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Francis,C. L., Ryan,T. A., Jones,B. D., Smith,S. J. & Falkow,S. Ruffles induced by Salmonella and other stimuli direct macropinocytosis of bacteria. Nature 364, 639–642 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Collazo,C. M. & Galan,J. E. The invasion-associated type III protein secretion system in Salmonella—a review. Gene 192, 51–59 (1997).

    Article  CAS  Google Scholar 

  9. Pehheiter,K. L., Mathur,N., Giles,D., Gahlen,T. & Jones,B. D. Non-invasive Salmonella typhimurium mutants are avirulent because of an inability to enter and destroy M cells of ileal Peyer's patches. Mol. Microbiol. 24, 697–709 (1997).

    Article  Google Scholar 

  10. Baumler,A. J., Tsolis,R. M., Valentine,P. J., Ficht,T. A. & Heffron,F. Synergistic effect of mutations in invA and lpfC on the ability of Salmonella typhimurium to cause murine typhoid. Infect. Immun. 65, 2254–2259 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Shang,X. Z. & Issekutz,A. C. Contribution of CD11a/CD18, CD11b/CD18, ICAM-1 (CD54) and -2 (CD102) to human monocyte migration through endothelium and connective tissue fibroblast barriers. Eur. J. Immunol. 28, 1070–1979 (1998).

    Article  Google Scholar 

  12. Fields,P. I., Swanson,R. V., Haidaris,T. G. & Heffron,F. Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc. Natl Acad. Sci. USA 83, 5189–5193 (1986).

    Article  ADS  CAS  Google Scholar 

  13. Wilson,R. W. et al. Gene targeting yields a CD18-mutant mouse for study of inflammation. J. Immunol. 151, 1571–1578 (1993).

    CAS  PubMed  Google Scholar 

  14. Kishimoto,T. K. & Anderson,D. C. in Inflammation: Basic Principles and Clinical Correlates 2nd edn (eds Gallin, J. I., Goldstein, I. M. & Snyderman, R.) 353–406 (Raven, New York, 1992).

    Google Scholar 

  15. Conlan,J. W. & North,R. J. Listeria monocytogenes, but not Salmonella typhimurium, elicits a CD18-independent mechanism of neutrophil extravasation into the murine peritoneal cavity. Infect. Immun. 62, 2702–2706 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Baumler,A. J., Tsolis,R. M. & Heffron,F. The lpf fimbrial operon mediates adhesion to murine Peyer's patches. Proc. Natl Acad. Sci. USA 93, 279–283 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Gerichter,C. B. The dissemination of Salmonella typhi, S. paratyphi A and S. paratyphi B through the organs of the white mouse by oral infection. J. Hyg. 58, 307–319 (1960).

    Article  CAS  Google Scholar 

  18. Bernstein,C. N., Sargent,M., Gallatin,W. M. & Wilkins,J. β2-integrin/intercellular adhesion molecule (ICAM) expression in the normal human intestine. Clin. Exp. Immunol. 106, 160–169 (1996).

    CAS  PubMed  Google Scholar 

  19. Oskoui,R., Davis,W. & Gomes,M. N. Salmonella aortitis. A report of a successfully treated case with a comprehensive review of the literature. Arch. Int. Med. 153, 517–525 (1993).

    Article  CAS  Google Scholar 

  20. Neutra,M. R. Current concepts in mucosal immunity. V. Role of M cells in transepithelial transport of antigens and pathogens to the mucosal immune system. Am. J. Physiol. 274, G785–791 (1998).

    CAS  PubMed  Google Scholar 

  21. Autenrieth,I. B., Kempf,V., Sprinz,T., Preger,S. & Schnell,A. Defense mechanisms in Peyer's patches and mesenteric lymph nodes against Yersinia enterocolitica involve integrins and cytokines. Infect. Immun. 64, 1357–1368 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Tsolis,R. M., Bauler,A. J., Stojiljkovic,I. & Heffron,F. Fur regulon of Salmonella typhimurium: identification of new iron-regulated genes. J. Bacteriol. 177, 4628–4637 (1995).

    Article  CAS  Google Scholar 

  23. Valdivia,R. H. & Falkow,S. Bacterial genetics by flow cytometry: rapid isolation of Salmonella typhimurium acid-inducible promoters by differential fluorescence induction. Mol. Microbiol. 22, 367–378 (1996).

    Article  CAS  Google Scholar 

  24. Rahn,K. et al. Amplification of an invA gene sequence of Salmonella typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Mol. Cell. Probes 6, 271–279 (1992).

    Article  CAS  Google Scholar 

  25. Kinder,S. A., Badger,J. L., Bryant,G. O., Pepe,J. C. & Miller,V. L. Cloning of the YenI restriction endonuclease and methyltransferase from Yersinia enterocolitica serotype O:8 and construction of a transformable R-M+ mutant. Gene 136, 271–275 (1993).

    Article  CAS  Google Scholar 

  26. Miller,V. L. & Mekalanos,J. J. A novel suicide vector and its use in construction of insertion mutations; osmoregulation of outer membrane proteins and virulence determinants requires toxR. J. Bacteriol. 170, 2575–2583 (1988).

    Article  CAS  Google Scholar 

  27. Stojiljkovic,I., Baumler,A. J. & Heffron,F. Ethanolamine utilization operon of Salmonella typhimurium: nucleotide sequence, protein expression and mutational analysis of the cchB eutE eutJ eutG eutH gene cluster. J. Bacteriol. 177, 1357–1366 (1995).

    Article  CAS  Google Scholar 

  28. Valentine,P. J., Devore,B. P. & Heffron,F. Identification of three highly attenuated Salmonella typhimurium mutants that are more immunogenic and protective in mice than a prototypical aroA mutant. Infect. Immun. 66, 3378–3383 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Berggren,R. E. et al. HIV gp120-specific cell-mediated immune responses in mice after oral immunization with recombinant Salmonella. J. AIDS 10, 489–495 (1995).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the NIH (A.V.T., J.J.C., A.B., R.B. and F.F.), the United States Department of Agriculture (A.B.), and the James Biundo Foundation (F.F.). The authors are grateful to E. Balish for constructive review of the manuscript and thank F. Heffron and S. Moller for the gifts of strains CL1509 and SM022, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferric C. Fang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vazquez-Torres, A., Jones-Carson, J., Bäumler, A. et al. Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes. Nature 401, 804–808 (1999). https://doi.org/10.1038/44593

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/44593

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing