Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Decline in Mesozoic reef-building sponges explained by silicon limitation

Abstract

Several unrelated clades of siliceous sponges proliferated on the shelves of the Jurassic Tethys Sea, becoming prominent builders in reefs and near-shore mounds1,2,3,4. Many of these builders are characterized by massive, rock-like skeletons made of spicules with a characteristic terminal hypersilicification4,5. Such hypertrophied spicules are generically known as desmas, irrespective of their phylogenetic origin5. Desma-bearing sponges virtually disappeared from reefs and other neritic environments during the Cretaceous and the Early Tertiary1,2,4,6, but have subsisted in relict populations in deeper, bathyal waters5,7,8. The causes of the decline and bathymetric shift of these sponges remain obscure. Here we show experimentally that the concentration of silicic acid in seawater modulates the phenotypic expression of the various spicule types genetically available in a sponge species. We also show that the concentration of this nutrient in Recent surface waters is insufficient for this species to secrete its desmas. These findings indicate that silicon limitation, probably aggravated in shallow waters by the diatom burst around the Cretaceous–Tertiary boundary9,10, may have forced neritic sponges with desmas to either lighten their skeletons or move to deeper, silicon-rich environments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Skeletons produced under different concentrations of Si(OH)4.
Figure 2: Spicules produced under two experimental levels of Si supply.
Figure 3

Similar content being viewed by others

References

  1. Hartman,W. D., Wendt,J. W. & Wiedenmayer,F. Living and fossil sponges. Notes for a short course. Sedimentia 8, 1–274 (1980).

    Google Scholar 

  2. Ghiold,J. The sponges that spanned Europe. New Scient. 129, 58–62 (1991).

    Google Scholar 

  3. Leinfelder,R. R. Upper Jurassic reef types and controlling factors. Profil 5, 1–45 (1993).

    Google Scholar 

  4. Wiedenmayer,F. Contributions to the knowledge of post-Paleozoic neritic and archibental sponges (Porifera). Schweiz. Paläont. Abh. 116, 1–147 (1994).

    Google Scholar 

  5. Lévi,C. in Fossil and Recent Sponges (eds Reitner, J. & Keupp, H.) 72–82 (Springer, New York, 1991).

    Google Scholar 

  6. Moret,L. Contribution à l'étude des spongiaires siliceux du Miocene de l'Algerie. Mém. Soc. Géol. Fr. 1, 1-27 (1924).

    Google Scholar 

  7. Vacelet,J. Indications de profondeur donnés par les Spongiaires dans les milieux benthiques actuels. Géol. Méditerr. 15, 13–26 (1988).

    Google Scholar 

  8. Maldonado,M. & Young,C. M. Bathymetric patterns of sponge distribution on the Bahamian slope. Deep-Sea Res. I 43, 897–915 (1996).

    Google Scholar 

  9. Lowenstam,H. A. & Weiner,S. On Biomineralization (Oxford Univ., Oxford, 1989).

    Google Scholar 

  10. Maliva,R. G., Knoll,A. H. & Siever,R. Secular change in chert distribution: a reflection of evolving biological participation in the silica cycle. Palaios 4, 519–532 (1989).

    ADS  CAS  PubMed  Google Scholar 

  11. Nelson,D. M., Tréguer,P., Brzezinski,M. A., Leynaert,A. & Quéguiner,B. Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Glob. Biochem. Cycles 9, 359–372 (1995).

    ADS  CAS  Google Scholar 

  12. Tréguer,P. et al. The silica balance in the world ocean: a reestimate. Science 268, 375–379 (1995).

    ADS  PubMed  Google Scholar 

  13. Calvert,S. E. in Silicon Geochemistry and Biogeochemistry (ed. Aston, S. R.) 143–186 (Academic, London, 1983).

    Google Scholar 

  14. Lisitzyn,A. P. Sedimentation in the world ocean. Soc. Econ. Palaeon. Mineral. Spec. Pub. 17, 1–218 (1972).

    Google Scholar 

  15. Weinberg,S. Découvrir la Méditerranée (Éditions Nathan, Paris, 1993).

    Google Scholar 

  16. Maldonado,M. & Uriz,M. J. Skeletal morphology of two controversial poecilosclerid genera (Porifera, Demospongiae): Discorhabdella and Crambe. Helgoländer Meeresunters. 50, 369–390 (1996).

    Google Scholar 

  17. Hinde,G. J. & Holmes,W. M. On the sponge remains in the Lower Tertiary strata near Oamaru, New Zealand. J. Linn. Soc. Zool. 24, 177–262 (1892).

    Google Scholar 

  18. Kelly-Borges,M. & Pomponi,S. A. Phylogeny and classification of lithisthid sponges (Porifera: Demospongiae): a preliminary assessment using ribosomal DNA sequence comparisons. Mol. Mar. Biol. Biotech. 3, 87–103 (1994).

    CAS  Google Scholar 

  19. Mostler,H. Poriferenspiculae der alpinen Trias. Geol. Paläont. Mitt. Innsbruck. 6, 1–42 (1976).

    Google Scholar 

  20. Palmer,T. J. & Fürsich,F. T. Ecology of sponge reefs from the Upper Bathonian of Normandy. Palaeontology 24, 1–23 (1981).

    Google Scholar 

  21. Burckle,L. H. in Introduction to Marine Micropaleontology (eds Haq, B. U. & Boersma, A.) 245–266 (Elsevier, Amsterdam, 1978).

    Google Scholar 

  22. Austin,B. Underwater birdwatching. Canadian Tech. Rep. Hydro. Ocean. Sci. 38, 83–90 (1984).

    Google Scholar 

  23. Koltun,V. M. in The Biology of the Porifera (ed. Fry, W. G.) 285–297 (Academic, London, 1970).

    Google Scholar 

  24. Tabachnick,K. R. in Sponges in Time and Space (eds van Soest, R. M. W., van Kempen, T. M. G. & Braekman, J. C.) 225–232 (A. A. Balkema, Rotterdam, 1994).

    Google Scholar 

  25. Harper,H. E. & Knoll,A. H. Silica, diatoms and Cenozoic radiolarian evolution. Geology 3, 175–177 (1975).

    ADS  Google Scholar 

  26. Hartman,W. D. in Silicon and Siliceous Structures in Biological Systems (eds Simpson, T. L. & Volcani, B. E.) 453–493 (Springer Verlag, New York, 1981).

    Google Scholar 

  27. Pisera,A. Upper Jurassic siliceous sponges from Swabian Alb: taxonomy and paleoecology. Palaeont. Pol. 57, 1–216 (1997).

    Google Scholar 

  28. Reincke,T. & Barthel,D. Silica uptake kinetics of Halichondria panicea in Kiel Bight. Mar. Biol. 129, 591–593 (1997).

    CAS  Google Scholar 

  29. Grasshoff,K., Ehrardt,M. & Kremling,K. Methods of Seawater Analysis (Verlag Chemie, Weinheim, 1983).

    Google Scholar 

  30. Maldonado,M. & Uriz,M. J. An experimental approach to the ecological significance of microhabitat-scale movement in an encrusting sponge. Mar. Ecol. Prog. Ser. 185, 239–255 (1999).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank S. Pla for help with nutrient analyses, technicians of the Servicio de Microscopia for help with SEM, and E. Ballesteros, C. M. Young, A. Pisera and R. Rycroft for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Maldonado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maldonado, M., Carmona, M., Uriz, M. et al. Decline in Mesozoic reef-building sponges explained by silicon limitation. Nature 401, 785–788 (1999). https://doi.org/10.1038/44560

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/44560

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing