
R-Roscovitine simultaneously targets both the p53 and
NF-jB pathways and causes potentiation of apoptosis:
implications in cancer therapy
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Seliciclib (CYC202, R-Roscovitine) is a 2, 6, 9-substituted purine analog that is currently in phase II clinical trials as an anticancer
agent. We show in this study that R-Roscovitine can downregulate nuclear factor-kappa B (NF-jB) activation in response to
tumor necrosis factor (TNF)a and interleukin 1. Activation of p53-dependent transcription is not compromised when R-
Roscovitine is combined with TNFa. We characterize the molecular mechanism governing NF-jB repression and show that R-
Roscovitine inhibits the IjB kinase (IKK) kinase activity, which leads to defective IjBa phosphorylation, degradation and hence
nuclear function of NF-jB. We further show that the downregulation of the NF-jB pathway is also at the level of p65 modification
and that the phosphorylation of p65 at Ser 536 is repressed by R-Roscovitine. Consistent with repression of canonical IKK
signaling pathway, the induction of NF-jB target genes monocyte chemoattractant protein, intercellular adhesion molecule-1,
cyclooxygenase-2 and IL-8 is also inhibited by R-Roscovitine. We further show that treatment of cells with TNFa and R-
Roscovitine causes potentiation of cell death. Based on these results, we suggest the potential use of R-Roscovitine as a
bitargeted anticancer drug that functions by simultaneously causing p53 activation and NF-jB suppression. This study also
provides mechanistic insight into the molecular mechanism of action of R-Roscovitine, thereby possibly explaining its anti-
inflammatory properties.
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The p53 and nuclear factor-kappa B (NF-kB) pathways are
two critical transcriptional regulatory networks deregulated in
various human ailments including cancer and there has been
a lot of evidence of cross-talk between these two pathways.1

Activation of p53 is associated with cell cycle arrest and
apoptosis while NF-kB activation is associated with cell
survival. Hence, the cross-talk between these pathways must
be finely tuned and regulated.
p53 is one of themost extensively studied tumor suppressor

proteins.2 Loss or mutation of p53 function is correlated with
increased cancer susceptibility. Hence, activating p53 has
been a goal of several small molecule inhibitors currently
being evaluated in the clinic.
NF-kB is a transcription factor critical for the control of

inflammation, apoptosis and cell proliferation.3,4 Chronic
inflammation by constitutively active NF-kB has been shown
to contribute to the development of many cancers.5 It is
becoming apparent that deregulated activity of NF-kB is
observed and causally linked to the development of several
diseases that have an inflammatory component.6,7 Hence,
identification of NF-kB inhibitors has been the focus of several
academic and pharmaceutical establishments.6,7 Since p53
promotes cell death and NF-kB prevents cell death, an

anticancer agent that simultaneously activates p53 and
inhibits NF-kB would offer greater potential to target two
cancer targets positively.
One of the ways in which the p53 pathway has been

successfully targeted is by using cyclin-dependent kinase
(CDK) inhibitors for treating various cancers, either as single
agents or in combination with other drugs. Seliciclib (CYC202,
R-Roscovitine) is a 2, 6, 9-substituted purine analogue that is
currently in phase II clinical trials as an anticancer agent. It
competes with ATP to bind to the active site on CDKs and it
was recently shown that R-Roscovitine inhibits RNA poly-
merase-II-dependent transcription and downregulates Mcl-1,
leading to apoptosis.8 R-Roscovitine has been shown to
repress inhibition of p53 by Mdm2 and thereby activate p53
by blocking its degradation.9 Disruption of the nucleolus to
stabilize p53 has also been proposed as another alternate
mechanism to activate p53.10 R-Roscovitine has also been
shown to inhibit retinoblastoma protein phosphorylation,
decrease levels of cyclin D1 protein and activate the
mitogen-activated protein kinase pathway.11 These studies
provide information on the cellular pharmacology of the drug
and are a good source of pharmacodynamic markers in the
development of the drug in the clinic. R-Roscovitine has been
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proposed for combination chemotherapy by affecting DNA
repair, apoptosis and having a chemoprotective effect.12 It
has been reported to have antitumor activity against several
cancer cell lines.11,13,14 It can also induce apoptosis in
multiple myeloma cells,15 primary B-cell chronic lymphatic
leukemia cells16 and also maturing cerebellar granule
neurons.17 Another study demonstrated the ability of R-
Roscovitine to promote resolution of inflammation and
inflammatory cell apoptosis associated with the loss of
expression of Mcl-1.18 This was further confirmed in mouse
models of bleomycin-induced lung injury; carrageenan elicited
acute pleurisy and passively induced arthritis, thereby
suggesting its potential use for treating various inflammatory
diseases. R-Roscovitine was also reported to effectively
arrest cystic disease in mouse models of polycystic kidney
disease (PKD), thereby suggesting its potential use in the
treatment of PKD.19 Thus, there is considerable interest in
elucidating the mechanism of action of R-Roscovitine to help
in its evaluation as a potential drug for use in the clinic.
In this study, we show that R-Roscovitine can inhibit

activation of NF-kB. While the NF-kB pathway is repressed,
activation of p53 is not compromised, suggesting its potential
to target both these critical cancer targets simultaneously. We
characterize the molecular mechanism underlying its action.
Our results provide deeper insight into the cellular pharma-
cology of R-Roscovitine and could also help to explain its anti-
inflammatory effects.

Results

R-Roscovitine represses TNFa-induced activation of
NF-jB in a dose-dependent manner. Since the NF-kB
pathway has been shown to be a target for anti-inflammatory
molecules,20 we checked whether R-Roscovitine, which has
anti-inflammatory properties,18 has any effect on the NF-kB
pathway. For this, A549-NF-kB-luc (A549) and 293-NF-kB-
luc (293) cells were treated with different concentrations of R-
Roscovitine (5, 10, 15 and 30 mM). Both the cell lines used
are stable cell lines derived from human A549 and 293 cells,
respectively, with chromosomal integration of a luciferase
reporter construct regulated by six copies of the NF-kB
response element (Panomics). A549 cells show optimum
NF-kB activation when incubated with 50 ng/ml tumor
necrosis factor (TNF)a for 6 h, while 293 cells show
optimum activation when treated with 20 ng/ml TNFa for 8 h
before luciferase activity is read (Panomics).
We used a concentration range of R-Roscovitine that has

been previously shown to increase p53-dependent transcrip-
tion,8 and found that R-Roscovitine inhibits TNFa-induced
activation of NF-kB reporter in a dose-dependent manner
(Figure 1a, lanes 6–10). The results were further confirmed
in 293 cells (Figure 1b, lanes 6–10). We conclude that
R-Roscovitine inhibits the activation of NF-kB in a dose-
dependent manner.

p53 activation is not compromised upon combination of
R-Roscovitine with TNFa. It is known that R-Roscovitine
activates p53-dependent transcription.8,9 We next tested

whether the suppression of TNFa-induced activation of NF-kB
after treatment with R-Roscovitine was at the expense of p53
pathway activation. As shown in Figure 2a (lanes 3,4),
treating cells with R-Roscovitine or its combination with TNFa
showed a significant increase in p53 protein levels, while
treatment of A549 cells with TNFa alone did not show any
increase (Figure 2a, lane 2). We also tested if the treatment
had any effect on p53 modifications. As shown in Figure 2a
(lanes 3–4), simultaneous treatment with R-Roscovitine and
TNFa for 12 h showed an increase in phosphorylation of both
Ser392 and Ser15 and also acetylation of p53.
p53 activation (Figure 2a) was further confirmed by using a

cell-based reporter assay in ARN8 human melanoma cells
which measures induction of p53 transcriptional activity.21

Treatment of cells with R-Roscovitine alone induces p53-
dependent transcription, while treatment of cells with TNFa
alone shows no activation (Figure 2b). However, a similar
degree of p53 activation is still maintained when the cells are
simultaneously treated with R-Roscovitine and TNFa. This
was further confirmed by quantitative RT-PCR for p53 target
genes (Figure 2c). Treatment of cells with R-Roscovitine and
TNFa showed an increase in mRNA levels of p53 target genes
like p21 and p53-upregulatedmodulator of apoptosis (PUMA).
We thus conclude that p53 activation is not compromised
upon combination of R-Roscovitine and TNFa.

R-Roscovitine inhibits NF-jB target genes. TNFa has
been shown to upregulate levels of NF-kB target genes like
intercellular adhesion molecule-1 (ICAM-1), cyclooxygenase
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Figure 1 R-Roscovitine inhibits TNFa-induced activation of the NF-kB pathway
in a dose-dependent manner. (a, b) A549-NF-kB-Luc (A549) cells were treated with
R-Roscovitine and TNFa (50 ng/ml) and reporter activity was measured 6 h after
treatment. 293-NF-kB-Luc (293) cells were treated with R-Roscovitine and TNFa
(20 ng/ml), and reporter activity was measured 8 h after treatment. Increasing
concentrations of R-Roscovitine used: 5, 10, 15 and 30 mM. The fold activation and
repression represented is an average of triplicates of two independent data sets
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(Cox-2), cyclin D1, Bcl-xL, FLICE-inhibitory protein (FLIP),
etc.22–25 We assessed whether R-Roscovitine could
downregulate these endogenous NF-kB target genes in a
manner similar to its repression of the NF-kB reporter gene
activity (Figure 1). Figure 3a and b (lanes 7–10) document
that R-Roscovitine repressed the expression of NF-kB gene
products ICAM-1, monocyte chemoattractant protein
(MCP-1), Bcl-xL and FLIP in both A549 and H1299 cells.
To validate if this repression occurred at the level of
transcription, we carried out quantitative RT-PCRs. We
show that downregulation of NF-kB targets MCP-1, Cox-2
and IL8 in both A549 and H1299 cells indeed occurred at the
level of transcription (Figure 3c–e). Besides TNFa, NF-kB
activity is also induced by inflammatory cytokines like
interleukin 1 (IL1).26 We found that R-Roscovitine strikingly
inhibits NF-kB targets ICAM-1 and MCP-1 induced by IL1
as well (Figure 3f). Taken together, we believe that
R-Roscovitine could be used as a potent inhibitor of NF-kB
signaling.

R-Roscovitine inhibits TNFa-induced IKK kinase
activity. We next studied the effect of R-Roscovitine on
IkB kinase (IKK) activity. Treatment of cells with TNFa led to
the increase of IKK autophosphorylation activity (Figure 4a,
compare lanes 1 and 2) and consequently the IKK activity
towards its substrate, GST-IkBa (Figure 4b, compare lanes 1
and 2). While R-Roscovitine had no effect on the basal IKK

activity (Figure 4b, compare lanes 2 and 3), it inhibited TNFa-
induced IKK activity towards GST-IkBa (Figure 4b, compare
lanes 1 and 4). Overall protein levels of NF-kB essential
modulator (NEMO) and IKK2 induced by TNFa are not
affected in the presence of R-Roscovitine in A549 cells
(Figure 4c, lanes 1–4). The autoactivaton of IKK as
measured by a phospho-specific antibody demonstrated
that while TNFa induced IKK autophosphorylation
(Figure 4c, compare lanes 1 and 2), R-Roscovitine blocked
this phosphorylation in the activation loop of IKKs (Figure 4c,
compare lanes 1 and 4). We cannot, at this point, distinguish
between the possibilities of whether R-Roscovitine is direct
inhibitor of IKKs or does it inhibit an upstream kinase that
activates IKK (and is pulled down along with them in the
immunoprecipitations).
To further test which IKK subunit is the seat of action of

R-Roscovitine, WT MEFs and IKK1 and IKK2 knockout MEFs
were treated with R-Roscovitine and TNFa in a manner similar
to A549 and H1299 (Figure 3a and b). As seen with A549 and
H1299 cells, in WT MEFs, R-Roscovitine inhibits TNFa-
induced activation of NF-kB target gene MCP-1 (Figure 4d,
compare lanes 1–5 to lanes 6–10 in left panel). Compared to
WT and IKK1�/� MEFs, MCP-1 is less inducible in IKK2�/�
(Figure 4d, compare lanes 1–5 to lanes 6–10 in all panels).
Furthermore, R-Roscovitine-mediated repression of MCP-1 is
much less dramatic in IKK2�/� MEFs compared to WT and
IKK1�/�MEFs (Figure 4d, compare lanes 1–5 to lanes 6–10
in all panels). We conclude that Roscovitine inhibits the IKK
kinase activity andmost likely mediates its effects by targeting
an upstream IKK kinase or a critical component of the IKK
complex. Overall, our biochemical, pharmacological and
genetic data clearly indicate that R-Roscovitine is an inhibitor
of canonical NF-kB signaling and this depends on its ability to
block the kinase activity of the IKK complex.

R-Roscovitine inhibits TNFa-dependent IjBa phosphory-
lation and degradation. It is known that the degradation of
IkBa is required for nuclear accumulation of NF-kB.27 Since
R-Roscovitine could inhibit IKK activity, we next investigated
if it could block IKK-mediated IkBa phosphorylation and
degradation. Treatment of cells with TNFa led to
phosphorylation of IkBa (Figure 4e and f, lanes 1–5). Since
IkBa is also a target of NF-kB, TNFa treatment also led to its
degradation and re-synthesis (Figure 4e and f, lanes 1–5).
However both phosphorylation of IkB as well as its
degradation and re-synthesis in response to TNFa were
blocked by R-Roscovitine (Figure 4e and f, compare lanes 1–5
to lanes 6–10). Thus, R-Roscovitine represses the NF-kB
pathway by inhibiting IKK-induced phosphorylation and
hence degradation of IkBa. Since protein expression levels
of IkBa seemed lower upon treatment with R-Roscovitine
alone (Figure 4e, compare lanes 1 and 6), we next
determined if R-Roscovitine treatment alone causes loss of
IkBa. For this, we treated cells with R-Roscovitine alone for
various time intervals (Supplementary Figure 2a). R-
Roscovitine treatment alone decreased levels of IkBa, 24 h
after treatment. In all our time course studies, cells were
pretreated with R-Roscovitine for 12 h followed by a time-
dependent treatment with TNFa. Hence at the final time
points, cells were exposed to R-Roscovitine for about
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Figure 2 p53 activation is not compromised upon combination of R-Roscovitine
with TNFa. (a) Combination of R-Roscovitine and TNFa activates levels of p53,
phosphorylation of p53 at Ser392 and Ser15 and p53 target genes p21 and PUMA.
A549 cells were treated with 30mM R-Roscovitine and 50 ng/ml TNFa for 12 h. Cells
were harvested and whole cells lysates prepared. Equal amounts of cell lysate were
analyzed by western blotting with antibodies as mentioned, and actin levels were
used to ensure equal loading. (b) Combination of R-Roscovitine and TNFa activate
p53-dependent transcription in ARN8 reporter cell line. (c) p53 target genes like p21
and PUMA are activated at the RNA level upon combination of R-Roscovitine and
TNFa as seen by quantitative RT-PCR
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16–24h, thus leading us to wonder if the effects of R-Roscovitine
on IkBa are merely reflective of a general downregulation of
Poll II transcripts like IkBa. However, densitometric analysis
of IkBa degradation and re-synthesis (Figure 4g and h, lanes
1–5) shows that treatment with TNFa alone decreases levels
of IkBa after 30min, which is restored to starting levels in a
time-dependent manner. Upon treatment with R-Roscovitine,
even though the starting levels of IkBa are lower, TNFa
treatment did not cause degradation and re-synthesis of IkBa
(Figure 4g and h, lanes 7–10). Furthermore, there was no
effect on IkBa levels upon treatment with R-Roscovitine
alone in either IKK1 or IKK2 knockout MEFs (Supplementary
Figure 2b), indicating that R-Roscovitine-mediated lowering
of IkBa levels could be cell type specific and is not the only
cause of reduced IkBa levels seen in some of our assays.
Taken together, our results demonstrate that apart from

exerting its effect on other pathways, R-Roscovitine is a
potent inhibitor of IKK activity and hence the NF-kB pathway.

R-Roscovitine inhibits TNFa-induced p65 Ser536
phosphorylation. TNFa-induced phosphorylation of p65 is
critical for NF-kB transcription.28 To further understand the
mechanism of NF-kB repression by R-Roscovitine, we
assessed the levels of p65 phosphorylation and other
critical components of the NF-kB pathway. As shown in
Figure 4e and f, R-Roscovitine significantly downregulates
TNFa-induced activation of p65 phosphorylation at Ser536
(compare lanes 1–6 and 7–10). A similar decrease in
phosphorylation is seen in p65 phosphorylation at Ser276;
however, the effect is less pronounced than phosphorylation
at Ser536. These effects are seen in both A549 and H1299
cells, further supporting our results that downregulation of the
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Figure 3 R-Roscovitine inhibits expression of NF-kB target genes. (a, b) R-Roscovitine inhibits expression of NF-kB-regulated gene products like ICAM-1, FLIP, MCP-1
and Bcl-xL in both A549 and H1299 cells. Cells were treated with 30 mM R-Roscovitine and 50 ng/ml TNFa for different time intervals as indicated. At different time points, cells
were harvested and whole cells lysates prepared. Equal amounts of cell lysate were analyzed by western blotting with antibodies as mentioned, and actin levels were used to
ensure equal loading. (c–e) Quantitative RT-PCR data showing downregulation of TNFa-induced NF-kB-regulated gene products MCP-1, Cox-2 and IL-8 by R-Roscovitine in
both A549 and H1299 cells. Cells were treated with 30 mM R-Roscovitine and 50 ng/ml TNFa for 12 h before they were harvested and total RNA was isolated (refer to Materials
and Methods for more details). (f) R-Roscovitine inhibits protein expression of ICAM-1 and MCP-1 induced by IL-1, another NF-kB-activating stimuli
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NF-kB pathway by R-Roscovitine is independent of the
status of p53 in the cells. Given that serine 536 is considered
a bona fide IKK site, these results are consistent with
R-Roscovitine being an inhibitor of canonical IKK signaling.

R-Roscovitine represses TNFa-induced p65 nuclear
localization. Since nuclear localization of the p65 subunit
is critical for NF-kB function, we next checked if R-
Roscovitine affects this process. R-Roscovitine inhibits
TNFa-induced nuclear accumulation of p65 at all the time

points tested (Figures 5 and 6). This effect is seen in both
A549 and H1299 cells. Taken together, the results presented
thus far indicate that R-Roscovitine is an inhibitor of IKK
kinase activity. Inhibition of this activity leads to loss of IkB
degradation and consequently leads to loss of modification
and nuclear accumulation of NF-kB.

R-Roscovitine potentiates cytotoxic effects of TNFa. It
has been shown that TNFa induces apoptosis if NF-kB is
repressed.29 Since R-Roscovitine can inhibit NF-kB, we also
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R-Roscovitine downregulates NF-jB pathway
A Dey et al

267

Cell Death and Differentiation



investigated if combining R-Roscovitine and TNFa could lead
to TNFa-induced cell death. Using annexin V staining as a
marker for cell death, we observed that R-Roscovitine
potentiated TNFa-induced cell death in a concentration-
and time-dependent manner in both A549 and H1299 cells
(Figure 7a and b, compare lanes 1–6). Furthermore,
combination of R-Roscovitine and TNFa for 12 h caused a
significant increase in PARP cleavage, another hallmark of
apoptosis (Figure 7c, lane 4). R-Roscovitine alone has been
shown to induce PARP cleavage.8 Treatment of A549 cells

with R-Roscovitine alone induces PARP cleavage only after
24 h (Figure 7d, lane 6), further supporting that R-Roscovitine
potentiates cytotoxic effects of TNFa.
Thus, we believe that R-Roscovitine is a useful agent that

can block critical physiological functions of NF-kB.

Discussion

R-Roscovitine is currently in clinical trials, both as a single
agent for treatment of different cancers or in more limited
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cases, in combination with nongenotoxic agents.30 A model
based on our study is presented in Figure 8. In this study, we
have shown that R-Roscovitine inhibits TNFa-induced NF-kB
pathway through inhibition of the IKK kinase activity and
phosphorylation and degradation of IkBa. Furthermore, we
show that it prevents nuclear accumulation of p65 and
downregulates phosphorylation of p65 at a crucial serine
536 residue, which is required for chromatin remodeling.
Consistent with being a potent inhibitor of NF-kB, R-
Roscovitine also potentiates apoptosis induced by TNFa
and downregulates expression of NF-kB target genes. Finally,

we demonstrate that R-Roscovitine can also inhibit NF-kB-
dependent gene activation in response to other stimuli such
as IL1 (Figure 3f).
Clinical use of TNFa as a single agent has been extremely

limited due to its severe side effects.31 It is becoming
increasingly evident that the best strategy to use in cancer
chemotherapy is a combination of known drugs that syner-
gistically act on various pathways and targets simultaneously.
This is also emerging as an improved means of combating the
problem of drug resistance and improving the efficiency of
therapeutic response to tumors. Our studies suggest the
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Figure 6 R-Roscovitine represses TNFa-induced p65 nuclear localization in H1299 cells. p65 localization upon treatment of cells with TNFa alone or in combination with
R-Roscovitine for the indicated times was assessed by immunocytochemistry (refer to Materials and Methods for more details)
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possibility of combining R-Roscovitine with TNFa or with other
NF-kB inhibitors for treatment of various cancers.
Inhibition of transcription has been predicted to sensitize

cancer cells to TNFa. This has been reported for flavopiridol,32

a semisynthetic flavonoid and another potent inhibitor of
cyclin-dependent kinases CDK1, CDK2, CDK4 and CDK7.33

Previous studies showing very strong cytotoxicity of flavopiri-
dol in combination with either TNFa or tumor necrosis factor-
related apoptosis inducing ligand (TRAIL) have been very
encouraging. While most efforts towards understanding the
mechanism of action of flavopiridol have focused on the p53
pathway, work by Takada and Aggarwal34 showed that
flavopiridol has the additional property of inhibiting TNFa-
induced activation of NF-kB in a dose-dependent manner. It
does so by inhibiting IkBa kinase, a key NF-kB regulator, and
affecting its critical post-translational modifications including
its degradation by ubiquitination. Flavopiridol also affects

nuclear localization of p65 and inhibits NF-kB target genes
like cyclin D1, thereby inhibiting inflammation and modulating
cell growth.34We see similar effects with R-Roscovitine on the
NF-kB pathway. Both R-Roscovitine and flavopiridol are CDK
inhibitors that suppress general transcription and paradoxi-
cally activate p53-dependent transcription. We show in this
study that R-Roscovitine activates p53-dependent transcrip-
tion even when combined with TNFa, and potentiates TNFa-
induced apoptosis in a dose- and time-dependent manner.
We also show in this study that the effect of R-Roscovitine on
the NF-kB pathway is independent of p53, further suggesting
its potential to target both these pathways simultaneously,
regardless of the p53 status in tumors. It is possible that, since
R-Roscovitine potentiates cell death independently of p53
(Figure 7a and b), the pathway involving the interaction of
Fas-associated death domain (FADD) and the mitochondrial
caspase cascade is involved.31 Furthermore, our study is
focused on the mechanism of action of R-Roscovitine in lung
cancer cells, where current clinical trials are focused (Appraise
trial, Cyclacel, http://www.cyclacel.com/cyc/rd/trials/).
A recent study35 showed that nuclear expression of p65

was significantly increased in both small-cell and non-small
cell lung cancers, thereby suggesting that inflammation could
have a potential role in the early pathogenesis of lung cancer.
Thus, R-Roscovitine could have therapeutic applications in
this context as well. We have shown in this study that R-
Roscovitine inhibits TNFa-induced activation of NF-kB target
genes involved in antiapoptosis (Bcl-xL and FLIP), proliferation
(Cox-2) and invasion of tumors (ICAM-1) (Figure 3a and b).
Earlier studies have shown that R-Roscovitine induces

apoptosis by inhibiting RNA polymerase II (Pol II)-dependent
transcription and downregulating genes involved in cell
survival.8,16 Consistent with their studies, we also see
downregulation of total Pol II and Ser2 phosphorylation upon
treatment with R-Roscovitine (Supplementary data 1). How-
ever, our data also support specific effects of R-Roscovitine
on inhibiting TNFa-induced activation of the NF-kB pathway.
Our reporter assay (Figure 1) shows that R-Roscovitine only
inhibits TNFa-induced activation. While levels of IkBa are
downregulated upon long exposure to R-Roscovitine, no
effect is seen on levels of IkBa in other cells like the IKK1
and IKK2 knockout MEFs. Thus, while inhibition of Pol II
transcription by R-Roscovitine could be a contributor to NF-kB
inhibition, the effect we report cannot be completely explained
by a general downregulation of Pol II-dependent transcription
by R-Roscovitine.
It is interesting to note that the protein levels of both IkBa

and Bcl-xL are decreased in A549 cells upon treatment with
R-Roscovitine for 24 h (Supplementary data 2 and 3). This is
not an effect of general transcription inhibition since a similar
effect is not seen in MEFs or IKK knockout cells. A very
interesting study by Junan Li et al.,36 showed that IkBa binds
CDK4 and inhibits its activity. They proposed a functional
cross-talk between the NF-kB pathway and the p16-CDK4-Rb
pathway. While our results show that R-Roscovitine inhibits
the NF-kB pathway and IkBa protein levels at longer time
points, R-Roscovitine has also been shown to inhibit Rb
protein phosphorylation.11 This further suggests the cross-talk
between these signaling pathways and suggests that
R-Roscovitine could be targeting both these pathways by
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Figure 7 R-Roscovitine potentiates TNFa-induced apoptosis in A549 and
H1299 cells in a time- and concentration-dependent manner. (a, b) Cells were
treated with 15 and 30mM R-Roscovitine alone, or in combination with 50 ng/ml
TNFa for 12, 24 and 48 h, as indicated. Apoptosis was assayed by an increase in
annexinV-positive cells. The % annexinV-positive cells represented are an average
of triplicate data sets. (c) Combination treatment of R-Roscovitine and TNFa shows
an increase in PARP cleavage in A549 cells, another hallmark of apoptosis
(compare lanes 1 and 4). (d) Treatment of A549 cells with 30 mM R-Roscovitine
alone induces PARP cleavage in a time-dependent manner. Cells were treated and
harvested as mentioned earlier (refer to Materials and Methods for more details)
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affecting IkBa. Further studies would be aimed at better
understanding the mechanism of this functional cross-talk
and its molecular pharmacology to aid development of
R-Roscovitine in the clinic.
Another recent work by Komarova et.al.37 showed p53 as a

suppressor of inflammatory response in mice and proposed a
general ‘buffering’ role of these reciprocally controlled path-
ways. This ‘pharmacological tuning’, as proposed by them,
would offer the potential of targeting both the pathways in one
attempt. Quinacrine, an anti-malarial drug, and flavopiridol have
also been shown to have both these desirable properties.38

Finally, our study shows that R-Roscovitine inhibits the
NF-kB pathway, thereby possibly explaining its anti-inflam-
matory properties. We show that it downregulates NF-kB
gene targets involved in antiapoptosis, cell invasion and
proliferation (Figure 8). Current studies are underway to
further delineate the targets of R-Roscovitine and their effects
on various signaling pathways. This study provides the
scientific rationale for combination therapy with R-Roscovitine
and also suggests biomarkers for effects of R-Roscovitine and
possibly other CDK inhibitors currently in the clinic for the
management of lung cancer. It would also beworthwhile to get
a deeper insight into the mechanism of action of R-
Roscovitine in combination with NF-kB inhibitors in the clinic.
Thus, R-Roscovitine has the potential to simultaneously
benefit two critical targets in cancer in a desirable way:
activation of p53 and suppression of NF-kB. This would be
particularly useful in cancers where NF-kB is constitutively
active, thereby maintaining p53 in a repressed state. We

further propose a thorough clinical evaluation of this
approach.

Materials and Methods
Cell culture, cell lines and reagents. A549-NF-kB-luc (A549) and 293-
NF-kB-luc (293) were purchased from Panomics Inc. Both cell lines were cultured at
371C and 5% CO2 in DMEM medium supplemented with 10% FBS, L-glutamine,
penicillin and streptomycin and were maintained in selection medium containing
HygromycinB. ARN8 human melanoma cells and H1299 (p53-null) human non-
small-cell lung carcinoma cells were cultured in DMEM medium supplemented with
10% FBS, penicillin and streptomycin. R-Roscovitine was purchased from
Calbiochem and TNFa was purchased from Sigma.

NF-jB reporter activity assay. A549-NF-kB-luc (A549) and 293-NF-kB-luc
(293) cells were seeded in 96-well plates at 10 000 cells/well. Cells were treated with
different concentrations of the drugs as mentioned for different time intervals. The
luciferase activity was measured using the Bright-Glot luciferase assay system
(Promega) and the assay was performed as per the manufacturer’s instructions.
The fold activation or repression was calculated relative to the control sample and all
measurements were done by calculating the average of triplicate samples of two
independent experiments.

p53 reporter activity assay. The p53 reporter activity assay was a cell-
based reporter assay developed in ARN8 cells. The details of the reporter system
have been described elsewhere.21 The assay was performed in 96-well plates and
the cells were seeded and treated as described above. The FluoReporter LacZ/
Galactosidase quantitation kit was used to measure fluorescence with excitation at
390 nm and emission at 460 nm. SpectraMAX (Molecular Probes) was used to
measure fluorescence readings.

AnnexinV staining. Cells were collected by trypsinization, washed twice in
PBS and harvested in PBS. Apoptosis was evaluated using the annexin V (FITC)-
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Figure 8 Model depicting mechanism of action of R-Roscovitine and its inhibition of the NF-kB pathway. (a) The canonical TNFa-induced NF-kB activation pathway. (b)
R-Roscovitine inhibits TNFa-induced phosphorylation and hence degradation of IkBa, as depicted by dashed lines. Since IkBa bound p65 is not modified and since R-
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propidium iodide binding assay (Roche). The extent of apoptosis was quantified as a
percentage of annexin V-positive cells over the total cell population. Flow cytometric
analysis was performed on an LSR II system (BD Biosciences).

Western blot analysis. Cells were seeded at 1� 106 cells/ml and treated
with 30mM R-Roscovitine and 50 ng/ml TNFa. Before harvesting, cells were
washed twice with PBS. The pellet was split for use for western blot analysis and
quantitative RT-PCR. Cells were lysed on ice in RIPA buffer with 2� protease
inhibitor cocktail (Roche) and the protein concentration was determined using the
Bradford reagent (Bio-Rad). In total, 30 mg of lysate in SDS gel loading buffer and
10 mM DTT was separated on 4–12% Bis-Tris gels (Invitrogen). Proteins were
transferred onto nitrocellulose membrane (Bio-Rad) and equal loading confirmed by
Ponceau S staining (Sigma). The membrane was blocked in 5% milk in PBS with
0.1% Tween-20 (PBST) for 1 h and incubated overnight with primary antibody at
41C. Membranes were washed with PBST and then incubated in horseradish
peroxidase-conjugated secondary antibody for 1 h at room temperature.
Membranes were washed again for 1 h with PBST and developed using ECL
detection reagents (Amersham). Antibodies were used to detect p53 (DO-1), p21,
PUMA (Calbiochem), p65, IkBa, ICAM-1, MCP-1 (Santa Cruz Biotechnology, Santa
Cruz, CA), Acetylated p53, p65-Ser536, p65-ser276, p-IkBa, PARP, p53-Ser15,
p53-Ser392, Bcl-xL, FLIP (Cell Signaling Technology) and Beta-actin (Sigma).

IKK kinase activity assay. IKK kinase activity was performed as described
previously.39 The cDNA coding for the first 54 amino acids of IkBa was isolated by
PCR from total MEF cDNA and cloned into pOPTG expression vector as a GST
fusion gene. The GST-IkBa (1–54aa) fusion protein was expressed in RIPL
bacteria, purified on glutathione sepharose beads (GE Healthcare) and used in the
kinase assay.

Quantitative RT-PCR. Cells were treated and harvested in the same way as
for western blot studies. Total RNA was isolated using the RNeasy kits (Qiagen).
The RNA was quantitated by spectrophotometric analysis and used for quantitative
RT-PCR. The primers used for each target analyzed are available upon request.
The power SYBR green PCR master mix (Applied Biosystems) was used for
quantitation of mRNA levels.

Immunostaining and fluorescence microscopy. Indirect immuno-
fluorescence was carried out as described previously.40 DO-1 (anti-p53), p65 (Santa
Cruz Biotechnology, Santa Cruz, CA, USA) and anti-mouse Alexa-488-coupled
secondary antibody (Molecular Probes) were used. Immunofluorescence was
visualized using AxioImager Z1 (Zeiss).
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