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Abstract
Pathogenic human immunodeficiency virus (HIV)/Simian
immunodeficiency virus (SIV) infection is associated with
increased T-cell apoptosis. In marked contrast to HIV infection
in humans and SIV infection in macaques, the SIV infection of
natural host species is typically nonpathogenic despite high
levels of viral replication. In these nonpathogenic primate models,
no observation of T-cell apoptosis was observed, suggesting that
either SIV is less capable of directly inducing apoptosis in natural
hosts (likely as a result of coevolution/coadaptation with the host)
or, alternatively, that the indirect T-cell apoptosis plays the key
role in determining the HIV-associated T-cell depletion and
progression to acquired immune deficiency syndrome (AIDS).
Understanding the molecular and cellular mechanisms respon-
sible for the disease-free equilibrium in natural hosts for SIV
infection, including those determining the absence of high levels
of T-cell apoptosis, is likely to provide important clues regarding
the mechanisms of AIDS pathogenesis in humans.
Cell Death and Differentiation (2005) 12, 979–990.
doi:10.1038/sj.cdd.4401600
Published online 1 April 2005

Keywords: SIV; primates; apoptosis; CD4; pathogenesis

Abbreviations: HIV, human immunodeficiency virus; SIV, Si-

mian immunodeficiency virus; SHIV, Simian-human immunodefi-

ciency virus; AIDS, acquired immune deficiency syndrome; NHPs,

African non-human primates; SMs, sooty mangabeys; AGMs,

African greenmonkeys; LNs, lymph nodes; FDC, follicular dendritic

cells; HAART, highly active antiretroviral therapy; DISC, death-

inducing signaling complex; zVAD-fmk, z-Val-Ala-Asp-fmk.

Non-human Primate (NHP) Models for HIV
Infection and AIDS

The family of CD4þ T-lymphotropic primate lentiviruses is
comprised of two human viruses (human immunodeficiency

virus type 1 (HIV-1) and 2 (HIV-2)) and as many as 27 distinct
simian immunodeficiency viruses (SIVs) found naturally in
African non-human primates (NHPs)1 (Figure 1a). The
pathogenesis of HIV-1 infection is a complex, multifactorial
process that depends on multiple, dynamic viral and host
factors. The depletion of CD4þ T cells is a major determinant
of pathogenicity in HIV-1 infection. In HIV-infected patients,
CD4 T-cell depletion is associated with high viral turnover,2

chronic generalized immune system activation,3–5 and pro-
gressive loss of T-cell-mediated immunity.6

Several studies have found that HIV originally resulted from
multiple episodes of zoonotic transmission to humans of CD4-
tropic lentiviruses circulating in NHPs.1 SIVs were shown to
cluster in at least six major, approximately equidistant
lineages.7,8 HIV-1 and HIV-2 belong to two of these clusters
and emerged most likely following transmissions of, respec-
tively, SIVcpz from chimpanzees and SIVsm from sooty
mangabeys (SMs).9–13 The remaining clusters are formed by
SIVs isolated from African green monkeys (AGMs), Syke’s
monkeys, l’hoest monkeys, and colobus monkeys.7,14–21

AGMs (Cercopithecus aethiops), due to their numbers and
wide geographical distribution in sub-Saharan Africa, repre-
sent the largest single reservoir of SIV (SIVagm), as upwards
of 50% of wild monkeys are infected with the virus. The
phylogeny of many SIVs resembles that of their host species,
suggesting a coevolution.11,14,22 In contrast to these, some
viruses (SIVrcm, SIVagm.sab, SIVmnd-2, and SIVdrl) cluster
in different lineages according to the genomic region
analyzed.23–26 These viruses most likely result from recombi-
nation events in monkeys dually infected by SIVs of two
distinct lineages.
Natural hosts for SIV generally do not show any signs of

acquired immune deficiency syndrome (AIDS) despite chronic
sustained levels of viral replication.27–32 Indeed, the develop-
ment of AIDS has been observed in only one SM and in one
mandrill, after a 18-year-incubation, exceeding the normal
lifespan of wild primates.33,34 Similar to humans and
macaques, naturally or experimentally infected SMs, AGMs,
and mandrills show viremia levels which are highly variable
among the individual monkeys, but in many of them
the plasmatic viral RNA levels are persistently as high or
even higher than those known with progression in hu-
mans.27–29,31,32,34,35 Studies of two subspecies (sabaeus
and vervet) of naturally SIV-infected AGMs analyzed during
the chronic phase shows signs of viral replication in the same
tissues as during pathogenic infections, including gut and
thymus.29,35,36 Both T CD4þ lymphocytes and macrophages
are infected.29 In two naturally SIV-infected SMs, the number
of virus replicating cells in lymph nodes (LNs) was similar
to what has been observed in macaques and humans
progressing to AIDS.28 Lower numbers of viral DNA and
RNA copy numbers were however observed in chronically
infected AGMs as compared to pathogenic SIVmac and
HIV infections.31,37 Both SIVagm and SIVsm infection are
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characterized by a low or absent viral trapping by follicular
dendritic cells (FDC) in LN germinal centers. Importantly,
accidental or experimental transmission of SIV from natural
hosts, that is, SMs and AGMs, to Asian non-natural NHP host
species, such as pigtailed and rhesus macaques, is followed by
development of AIDS.38,39 Similarly, SIVlhoest, which is
genetically close to SIVmnd-1 and is also associated with
asymptomatic infection in its natural host, appears to induce
AIDSwhen inoculated inmacaques.40Collectively, these studies
demonstrate that the absence of major CD4 T-cell depletion and
AIDS in natural hosts for SIV infection is not due to intrinsic lack
of viral pathogenicity, but that host-specific factors play a crucial
role in protection from disease progression. In addition, these
studies provide evidence that the nonpathogenic nature of SIV
infection in the natural host is likely to be not related to a more
effective host control over viral replication. However, the exact
molecular mechanisms underlying the lack of any AIDS-related
illness in natural hosts for SIV infection are still unknown.

T-cell Apoptosis and AIDS

T-cell apoptosis (Figure 2)may be one of themechanisms that
is responsible for T-cell depletion during HIV and SIV

infections. Several studies have found that abnormal levels
of apoptosis occur both in vitro41–51 and in vivo52,53 in CD4þ

and CD8þ T cells from HIV-1-infected persons. Importantly,
the majority of T cells undergoing apoptosis in HIV-infected
patients are not infected by the virus;52,53 this observation led
to the definition of ‘bystander’ apoptosis when referring to
apoptosis that is not occurring as a direct cytopathic effect of
HIV. Clinical studies have revealed that HIV-1 and HIV-2 differ
in their natural course of infection. Thus, HIV-2 is character-
ized by higher CD4 counts, low level of viremia, and low
transmission rate.54 It has been reported that the low
pathogenicity of HIV-2 is associated with a lower immune
activation and a lesser degree of CD4 T-cell apoptosis.55

Importantly, the magnitude of CD4þ T-cell apoptosis ob-
served in HIV-infected individuals correlates well with the
stage of HIV disease.56–61 In addition, changes in the levels of
T-cell apoptosis after highly active antiretroviral therapy
(HAART) predict the immunological response (i.e., increase
in CD4 T-cell count), thus confirming the link between disease
progression and apoptosis.62–64 Taken together, these
observations indicate that the increased susceptibility to
apoptosis of T lymphocytes from HIV-infected individuals is
a marker of HIV disease progression and support the
hypothesis that the chronic immune system activation that

Figure 2 Overview of apoptosis pathway. Ligation of the death receptors
(‘extrinsic pathway’) leads to the activation of the proapoptotic member of the Bcl-
2 family, Bid, generating a truncated Bid (tBid). tBid tranlocates to the
mitochondria where it acts with the proapoptotic Bax and Bak. The ‘intrinsic
pathway’ is induced after apoptotic insults (for drugs, UV, growth factor deprival,
etc.) leading to Bax and Bak activation and in turn induced mitochondrial
membrane permeabilization (DCm loss). Mitochondria insult is manifested by the
release of apoptogenic factors into the cytosol leading to chromatin condensation
and fragmentation and cell death (for a review, see Petit et al.190)

Figure 1 Human and non-human primate (NHP) models. (a) The family of
lymphotropic primate lentiviruses comprise large numbers of human (HIV) and
simian immunodeficiency viruses (SIVs) found naturally in NHPs. They present
three distinct genomic organization of which two are identical to HIV-1 and HIV-2.
(b) The depletion of CD4þ T cells is a major determinant of pathogenicity.
Experimental primate models reveal a relationship between CD4 T-cell apoptosis
and further progression towards AIDS
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follows HIV infection could be one of the mechanism
responsible for this cell death process.27,30,52

The primary acute phase of human (HIV) and simian (SIV)
immunodeficiency virus infection is characterized by an early
burst in viral replication, which results in an exponential
increase in plasma viral load and the dissemination and
seeding of the virus in all the peripheral lymphoid organs.65–69

Following the induction of the host humoral and cellular
immune response to the virus, a steady-state plasma viral
load level is reached at the end of this primary phase, around
2–6 months after infection in macaques and in humans; the
level of set-point viral replication predicts the progression
towards disease, ranging from rapid development of AIDS to
long-term slow progressive infection.70–73 Recent findings
support a dynamic model of pathogenesis in which the extent
of apoptosis induced during the primary phase of SIV infection
is predictive of the subsequent rapid or slow progression
towards AIDS.74 Furthermore, the extent of apoptosis in
peripheral lymph nodes is greater in primates infected with a
pathogenic SIV strain than in those infected with an
attenuated, nef-deleted SIV.75 Another study identified an
early induction of apoptosis in thymic T-cell precursors
(followed by a subsequent increase in cell cycling) in
macaques infected with pathogenic SIV; this effect was
lacking in the same macaque species infected with the nef-
deleted SIV.76 The fact that apoptosis in the thymus as well as
in the LNs of macaques infected with pathogenic SIV occurs in
both infected and uninfected T cells indicates again that
mechanisms other than the direct cytopathic effect of HIV are
involved in this disease process.53,77

Furthermore, studies performed in pathogenic and non-
pathogenic primate models of HIV or SIV infection during the
chronic asymptomatic phase have identified a correlation
between the induction of enhanced in vitro T-cell apoptosis
and the in vivo pathogenic nature of the retroviral infec-
tion27,44,51,78–84 (Figure 1b). Thus, enhanced levels of
apoptosis in CD4þ T cells were observed in HIV-1-infected
human individuals, rhesus macaques infected with a patho-
genic strain of SIVmac, and chimpanzees infected with a
pathogenic strain of SIVcpz leading to AIDS,78,85 while
enhanced CD8 T-cell apoptosis was observed in both
pathogenic and nonpathogenic primate models. In contrast,
no increased propensity of either CD4þ or CD8þ T-cell in
vitro apoptosis and normal levels of T-cell apoptosis in the T-
cell-dependent areas of the LN were observed in either
naturally or experimentally SIV-infected SMs.27 Altogether,
these reports suggest that the capacity to induce apoptosis
during primary SIV infection is a feature that does not depend
solely on the genetic makeup of the virus itself, but is related to
specific features of the host–virus interaction; these features
will then play a key role in determining the potential for a given
virus to induce AIDS in a specific host species.

Extrinsic and Intrinsic Programmed Cell
Death Pathways and AIDS

Activation-induced cell death

The increased level of T-cell apoptosis observed in HIV-
infected human individuals is associated with enhanced

expression of the CD95/Fas receptor and its ligand (CD95L)
(Figure 3a), and increased sensitivity of T cells to apoptosis
mediated by CD95/Fas ligation using either agonistic CD95
monoclonal antibodies or recombinant CD95L.48–50,86–94

Other members of the TNF-receptor ligand family (TRAIL,
TNF-a) have also been implicated in the increased T-cell
apoptosis seen in HIV-1-infected individuals.95–100 Similarly,
T cells from macaques infected with a pathogenic strain
(SIVmac251) are more prone to undergo apoptosis following
ligation of CD95/Fas than the other death receptors.101

Moreover, in HIV-infected individuals and SIV-infected ma-
caques, increased CD95/Fas sensitivity of CD8þ T cells did
not correlate with plasma viral load.102

Ligation of CD95/Fas by its counterpart CD95L induces the
aggregation of several proteins from the death-inducing
signaling complex (DISC) leading to the activation of the
initiator caspase-8.103 Once activated, caspase-8 can trigger
activation of downstream effector caspases (i.e., caspases 3,
6, and 7), which can be modulated by the caspase inhibitor
zVAD-fmk (z-Val-Ala-Asp-fmk). However, an alternative path-
way, independent to the caspase-8, involving the kinase RIP
and inducing a necrotic type of cell death that is not prevented
by zVAD-fmk has also been reported.104 In macaque as well
as in humans, zVAD-fmk prevents CD95-mediated T-cell
death, indicating that a RIP-dependent pathway of T-cell
death is not a prominent factor under these circum-
stances.49,101 Interestingly, the enhancement in CD95-
mediated T-cell death in rhesus macaques is not associated
with either an upregulation of caspase-3 and caspase-8 or a
decrease of FLIP-L and FLIP-S. Similarly, Badley et al.105

found that death of T cells from HIV-infected individuals was
not associated with a change in the amount of FLIP. T-cell
activation occurring in the course of immune responses has
been shown to increase sensitivity to CD95-induced apopto-
sis. Antiretroviral therapy is followed by a significant decrease
in CD95-induced, activation-induced, and spontaneous apop-
tosis in ex vivo cultured peripheral blood lymphocytes60,96

which correlates with decreased immune activation.105 Thus,
effective viral suppression decreases immune activation and
apoptosis, thereby contributing to immune reconstitution.

Death by neglect

Activated lymphocytes can undergo death by neglect after
antigen and inflammatory cytokine stimulations and those
dying cells are cleared at the end of an immune response. Cell
death as a result of neglect occurs after the loss of
mitochondrial homeostasis.106 Spontaneous apoptosis during
infection is associated with a loss of mitochondrial transmem-
brane potential (DCm), suggesting that changes in mitochon-
drial permeability could be a central event in the regulation of
T-cell death in HIV-infected individuals107 (Figure 3b). Re-
cently, we found that spontaneous T-cell death of pathogenic
SIVmac251-infected macaques was not prevented by zVAD-
fmk.101 Thus, although caspase activation was occurring in
the course of spontaneous apoptosis, it was dispensable for
cell killing. Bim is required for efficient death-by-neglect, as
Bim�/� mice have lymphoid hyperplasia and lymphocytes
display partial resistance to death-by-neglect.108,109 The cell
death observed in multiple tissues of Bcl-2�/� mice also
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requires Bim activity, because Bim deficiency can rescue
some aspects of Bcl-2-deficiency.110 The role of Bax and Bak
in the regulation of death-by-neglect and loss of mitochondrial
homeostasis has also been demonstrated in mice deficient in

these genes.111 Despite their potent ability to promote cell
death, individual Bax and Bak knockout mice show remark-
ably little changes in the immune phenotype. Bax-deficient
mice have mild lymphoid hyperplasia and Bak-deficient mice
have no discernable phenotype.112 In contrast, combined
deficiency of both Bax and Bak results in the appearance of
multiple phenotypes, in the immune system as well as in other
organs.113

In chronic SIVmac251-infected macaques, T-cell apoptosis
was not associated with an increase in Bax expression. Our
findings do not, however, exclude the possibility that SIV
infection favors the translocation of Bax from the cytosol to the
mitochondria. This phenomenon has been reported in other
cell types in response to growth factor deprivation.114,115 In
fact, a clear increase in the levels of two other proapoptotic
proteins, Bak and BimL, was observed. The increased levels
of these proteins in SIV-infected monkeys suggest that the
upregulation of Bak and Bimmay be involved in the loss of cm

loss and spontaneous T-cell death. However, the mechan-
isms involved in the changes of Bim and Bak expressions
upon SIV infection remain unknown.

Preventive effect of cytokines

Consistent with the idea that costimulatory signals expressed
by accessory cells play a key role in the control of T-cell
survival and T-cell death during HIV infection, we and others
have found that cytokines exert a preventive effect on T-cell
death of HIV-infected individuals.46,48,49,102,116–122 Thus, the
addition of antibodies to IL-10 or the addition of IL-12 have a
preventive effect on abnormal programmed cell death
induction in response to in vitro stimulation in HIV-infected
persons.46,48 Moreover, we found that IL-12, which upregu-
lates TH1 functions and prevents TCR-mediated CD4 T-cell
apoptosis, also prevents Fas-mediated apoptosis of CD4þ T
cells from HIV-infected persons.48 In contrast, IL-10 prevents
Fas-mediated apoptosis of CD8þ T cells from HIV-infected
persons while having no preventive effect on CD4 T-cell
death.49 IL-2, a cytokine secreted by activated T cells and
involved in cell-mediated immunity, had a preventive effect on
Fas-mediated death of both CD4þ and CD8þ T cells. IL-15
can also inhibit T-cell apoptosis and enhances the function of
HIV-specific CD8þ T cells. Similarly, IL-2 and IL-15 reduced
the death rate of CD4þ and CD8þ T cells from SIVmac251-
infected macaques following spontaneous apoptosis and
induction by Fas ligation, while IL-10 only prevents CD8 T-
cell death.101 Therefore, the relative contribution other than
overwhelming, direct-virus-mediated destruction might also
be operative for the role of lymphoid microenvironment (IL-15,
IL-12, and IL-10 are produced by macrophages). Thus, the
destruction of such support, concomitant with the loss of
CD4þ T cells, could impaire T-cell immune response.

Cell cycle dysregulation

Peripheral blood lymphocytes isolated from HIV-infected
patients show complex perturbation of cell cycle control,
consisting mainly of (i) increased intracellular levels of cyclin
B1 with consequent inappropriate activation of the p34 cdc2
kinase, and (ii) abnormal nucleolar structure, as shown by

Figure 3 Indirect mechanisms that mediate programmed cell death or
apoptosis during SIV infection. (a) Activation-induced cell death: Restimulation of
activated T cells induces death at least in part through a CD95/Fas pathway in
CD4þ T cells. Cytokines exert either a positive (IL-12) or negative (IL-10) effect
on CD4 T-cell apoptosis. (b) Neglected cell death: Members of the Bcl-2 family
regulate cell death. Upregulation of Bim and Bak-mediated mitochondrial
membrane potential lossleads to the release of apoptogenic factors from the
mitochondria into the cytosol. In this form of cell death, caspase inhibitor (zVAD-
fmk) prevented apoptotic phenotype (chromatin condensation and fragmenta-
tion) but did not prevent subsequent cell death. Cytokines, in contrast, prevented
both the apoptotic phenotype and the cell death by preserving mitochondrial
membrane potential
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staining for the argyrophilic Nucleolar Organizing Regions
(AgNOR) and the subcellular localization of nucleolin in
confocal microscopy.122–127 Importantly, the HIV-associated
cell cycle dysregulation is exacerbated by in vitro treatment
with mitogens and appears to be correlated with induction of
T-cell apoptosis;122,123,126 however, these cell cycle perturba-
tions and apoptosis are reduced after exogenous administra-
tion of IL-2 in vitro.122 In mitogen-activated lymphocytes from
HIV-infected patients, the inappropriate activation of the cyclin
B1/p34 cdc2 kinase complex is temporally associated with
increased threonine phosphorylation, augmented fragmenta-
tion, and prominent extranuclear and cell surface localization
of nucleolin.127 It is of note that increased lymphocyte
apoptosis is observed at the time of cell surface localization
of nucleolin. Interestingly, a recent comparative study of cell
cycle dysregulation in two models of pathogenic (i.e. rhesus
macaques) and nonpathogenic (i.e., SMs) SIV infection has
shown that a variety of cell cycle perturbations is observed in
apoptosis-sensitive T cells derived from the peripheral blood
and lymph nodes of macaques infected with SIV and
progressing to AIDS, while normal cell cycle regulation is
observed in apoptosis-resistant T cells from naturally SIV-
infected SMs that do not progress to AIDS.128 Taken together,
these findings suggest that during pathogenic HIV and SIV
infections (but not during nonpathogenic SIV infection of
natural hosts), the presence of cell cycle dysregulation is
involved in determining the abnormal susceptibility to apop-
tosis of T lymphocytes.124

The Interaction between the Envelope
Glycoprotein and CD4/coreceptors is a
Crucial Factor in the Pathogenesis of
AIDS

HIV-1 infection can cause apoptosis via a variety of mechan-
isms, some of which rely directly on the intricate interaction
between the virus and the host cells, and some of which act
indirectly through activation of the host’s inflammatory
reaction and immune system activation. Despite intensive
investigations, several important questions remain about the
mechanisms through which HIV infection directly induces
CD4 T-cell apoptosis. Although direct in vitro cytopathic effect
of HIV and SIV strains is a well-established phenomenon, it is
unclear what is the relevance of this direct cytopathic effect in
the context of in vivo viral replication. Indeed, a very intriguing
feature of nonpathogenic SIV infections, such as those in
SMs, AGMs, and mandrills, is that CD4 T-cell depletion and
AIDS do not arise despite in vitro cytopathicity and levels of
viremia that can be as high or higher than those observed in
the HIV-infected humans and SIV-infected macaques.27–32

Thus, virus–host cell-specific interactions have been pro-
posed as significant contributors to the development of
aberrant signaling events and progressive immunodefi-
ciency.53

The envelope glycoprotein complex (Env) appears to be
one of the dominant apoptosis-inducing molecules encoded
by the HIV-1 genome (Figure 4). The gp120 is present on the
surface of infected T cells, on viral particles, or as a soluble
protein129,130 and can bind to and crosslink CD4. The

interaction of the gp 120 with the CD4 molecule can prime
CD4þ and CD8þ T cells for apoptosis,95,131–135 and can
promote cell-to-cell fusion leading to syncytia formation that
can undergo apoptosis. This apoptosis is characterized by the
translocation of Bax from the cytosol to mitochondria leading
to the mitochondrial membrane permeabilization with loss of
the DCm), release of apoptogenic intermembrane proteins, in
particular apoptosis-inducing factor and cytochrome c, cas-
pase activation, and nuclear chromatin condensation.136 In
vitro studies have also identified a positive correlation
between CD4 T-cell depletion and infection by syncytium
inducing HIV-1137,138 or SIV variants.75,139–141 In addition,
multinucleated giant cells, a pathological hallmark of AIDS
encephalopathy are also found during SIV-encephalitis142,143

and these cells revealed DNA fragmentation.144 The HIV
envelope protein has also been reported to cause apoptosis
by binding to a chemokine coreceptor.145–148 Several studies
have indicated that macrophages are capable to trigger
apoptosis of uninfected bystander CD4þ and CD8þ T
cells.149 Apoptosis involve the interaction between several
death receptors (Fas, TNF-R, TRAIL-R) and their counter-
parts, their death ligands.96,100,102,150–153 As tissue macro-
phages from HIV-infected individuals have been shown to
harbor the virus and have the potential to act as reservoirs of
virions, the role of macrophages in inducing T-cell death in
vivo merit to be further explored in particular regarding
pathogenic and nonpathogenic primate models of AIDS.
Recently, it has been also observed that incubation of resting
CD4þ T cells from healthy donors with HIV, even in the
presence of an inhibitor of the viral replication, is sufficient to
prime CD4þ T cells for apoptosis.154,155 Therefore, asmost of
the HIV particles produced are noninfectious, the simple
fixation and/or penetration of viruses, without integration, may
be sufficient to prime T cells for apoptosis in quiescent cells.
Several studies have suggested a link between coreceptors

usage and disease progression in HIV-infected individuals.
The role of CCR5 in transmission has been highlighted by the
protective effect of a 32-bp deletion in CCR5 (CCR5D32) that
results in a truncatedmolecule that is not expressed at the cell
surface.156–158 Individuals homozygous for CCR5D32 are
resistant to HIV-1 infection, whereas the disease progresses
slowly in individuals who are heterozygous for this muta-
tion.159–161 Other studies have shown that the proportion of T
cells expressing CCR5 differs greatly between individuals and
increases chronically in HIV-infected individuals during dis-
ease progression,162,163 and others have shown that the cell
surface density of CCR5 correlates positively with disease
progression.164,165 It has been also reported that T-cell
depletion in peripheral blood during primary infection was
related to T cells expressing CCR5.166–168 However, this latter
observation remains controversial.169

Since HIV-1 does not replicate efficiently in non-human
primate species, chimeric simian-human immunodeficiency
viruses (SHIVs) have been created that can infect NHPs.
SHIVs contain HIV-1-derived segments encoding the viral
envelope glycoproteins and the Tat, Rev, and Vpu regulatory
proteins in an SIV background.170 A SHIV containing the
envelope glycoproteins of a primary HIV-1 isolate, 89.6,
replicated efficiently in rhesus monkeys but did not deplete
CD4þ T lymphocytes or induce disease in these animals.171
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Serial transfer of blood from SHIV-89.6-infected monkeys to
naive monkeys generated a virus, SHIV-89.6P, that exhibited
only modest increases in replication in infected monkeys
compared with SHIV-89.6.171 However, SHIV-89.6P caused
rapid loss of CD4þ T lymphocytes and, subsequently, AIDS-
like illness in inoculated monkeys. The risk of developing
AIDS-related disease in monkeys infected with SHIV-89.6P
variants is strongly influenced by the degree of decline in
CD4þ T lymphocytes during the acute phase of infec-
tion.172,173 Interestingly, infection of macaques with a patho-
genic CCR5-specific enveloped virus (SHIVSF162P) compared
with infection with a pathogenic CXCR4-specific enveloped
virus (SHIVSF33A.2) demonstrated that despite comparable
levels of viral replication, animals have distinct pathogenic
outcomes. R5-tropic SHIV causes a dramatic loss of CD4þ

intestinal T cells and a gradual depletion in peripheral CD4þ T
cells, while infection with X4-tropic SHIV causes a profound
loss in peripheral T cells that was not paralleled in the
intestine.174 Altogether, these reports suggest that the
capacity to induce T-cell depletion in monkeys is a feature
that depends at least in part on the genetic makeup of the
envelope protein (X4 versus R5).
The fact that in natural host species, such as SMs and

AGMs, SIV infection is nonpathogenic despite high viral loads
and CCR5 usage raises an apparent paradox. Indeed, HIV-1,
HIV-2, and both pathogenic and nonpathogenic SIVs use
CCR5 in association with the CD4 molecule.175–177 Moreover,
CD4þ T cells expressing CCR5 decreases at the peak of viral
replication in both pathogenic and nonpathogenic SIV-infected
monkeys.166,178–180 Altogether, these observations may in-
dicate that depletion of CCR5þCD4þ T cells is an important
event but likely is not the only factor involved in AIDS
pathogenesis. These observations also raise questions about
the role of alternative chemokine receptors in the immuno-
pathogenesis of AIDS. HIV uses CXCR4 as an alternative
coreceptor, whereas SIVs use several chemokine orphan
receptors such as BOB/GPR15 and Bonzo/STRL33/CXCR6
for efficient infection and replication in vitro.181–183 Several lines
of evidence indicated that in vitro BOB/GPR15 is an important
SIV coreceptor184–186 exhibiting greater activity than CCR5.184

Several reports have found that nonpathogenic SIV strains
such as SIVagm, SIVsun, SIVlhoest, and SIVrcm use Bonzo/
STRL33/CXCR6 in vitro but less BOB/GPR15.187–189 In
contrast, pathogenic SIV strains (SIVmne, SIVmac) have been
reported to use in vitro both CCR5 and BOB/GPR15 but not
Bonzo/STLR33/CXCR6.184–186 However, the in vivo role of
BOB/GPR15 andBonzo/STRL33/CXCR6uponSIV infection is
unknown and merit to be further explored.
Thus, studies in NHPs represent key approaches in

deciphering the mechanisms leading to CD4 T-cell apoptosis
which in turn favors further progression to AIDS.
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Figure 4 Coreceptor engagment-mediated T-cell apoptosis. (a) Syncytia
induced cell death: Cell-to-cell fusion leads to syncytia formation that induces Bax
upregulation and translocation to the mitochondria and subsequent release of
apoptogenic factors and cell death. (b) Bystander cell death: The envelope
glycoprotein interacts with the CD4 receptor at the cell membrane and
subsequently with the coreceptor (CXCR4/CCR5). This interaction induces signal
transduction leading to CD95/Fas sensitization. Fas ligand (FasL/CD95L), in cis
or in trans, induces cell death. Environmental factors like cytokines prevent
CD95-ligation-mediated cell death
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