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Abstract
The envelope glycoprotein complex (Env) of human immuno-
deficiency virus-1 (HIV-1) can induce apoptosis by a
cornucopia of distinct mechanisms. A soluble Env derivative,
gp120, can kill cells through signals that are transmitted by
chemokine receptors such as CXCR4. Cell surface-bound Env
(gp120/gp41), as present on the plasma membrane of HIV-1-
infected cells, can kill uninfected bystander cells expressing
CD4 and CXCR4 (or similar chemokine receptors, depending
on the Env variant) by at least three different mechanisms.
First, a transient interaction involving the exchange of lipids
between the two interacting cells (‘the kiss of death’) may lead
to the selective death of single CD4-expressing target cells.
Second, fusion of the interacting cells may lead to the
formation of syncytia which then succumb to apoptosis in a
complex pathway involving the activation of several kinases
(cyclin-dependent kinase-1, Cdk1; checkpoint kinase-2, Chk2;
mammalian target of rapamycin, mTOR; p38 mitogen-activated
protein kinase, p38 MAPK; inhibitor of NF-jB kinase, IKK), as
well as the activation of several transcription factors (NF-jB,
p53), finally resulting in the activation of the mitochondrial
pathway of apoptosis. Third, if the Env-expressing cell is at an
early stage of imminent apoptosis, its fusion with a CD4-
expressing target cell can precipitate the death of both cells,
through a process that may be considered as contagious
apoptosis and which does not involve Cdk1, mTOR, p38 nor
p53, yet does involve mitochondria. Activation of some of the
above- mentioned lethal signal transducers have been detected
in patients’ tissues, suggesting that HIV-1 may indeed trigger
apoptosis through molecules whose implication in Env-
induced killing has initially been discovered in vitro.
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Introduction

Viral infection can actively elicit apoptosis, in particular at late
stages of the viral life cycle when viral spreading and/or
subversion of the host’s immune system can help the virus to
colonize its host. In accord with this general rule, the acquired
immunodeficiency syndrome (AIDS) caused by human
immunodeficiency virus�1 (HIV-1) involves the apoptotic
destruction of infected cells (‘direct killing’) and of noninfected
cells many of which are immunologically relevant (‘bystander
killing’).1–3 Without doubt, HIV-1 can induce apoptosis
through a cornucopia of different mechanisms, including
effects that are non-cell-autonomous and can only be studied
in vivo, using material from human subjects or HIV/SIV-
infected primates.2 Thus, HIV-1 has been postulated to
subvert the trophic interactions among different immune cells,
be they contact-dependent or be they dictated by cytokines. In
addition, HIV-1 andHIV-1 products can also kill cells in vitro, in
a variety of model systems that can easily be explored.
HIV-1 encodes for several apoptogenic proteins including

envelop glycoprotein complex (Env), Vpr, Tat, Nef, and
Nfu,1,2,4 as well as for at least one antiapoptotic protein, a
putative glutathion peroxidase.5,6 Clinical case reports7 and
epidemiological data8 that await confirmation suggest that
loss-of-function mutations affecting the apoptogenic action of
Vpr9,10 are more frequent in viral isolates from long-term
nonprogressors (untreated patients with diagnosed HIV-1
infection for 410 years, with CD4T cell count of 4500Cells/
mm3) than in patients developing AIDS. Conversely, muta-
tions that truncate the putative glutathion peroxidase gene
tend to be more frequent in AIDS patients than in long-term
nonprogressors (Cohen et al., 2004), again underscoring the
notion that a higher apoptogenic (or a lower antiapoptotic)
potential of HIV-1 accelerates AIDS pathogenesis.
In viral infection assays involving wild-type HIV-1, the

apoptogenic effect of a clinically important HIV-1-encoded
protein such as Vpr8 is not observable due to the intrinsically
high apoptosis-inducing effect of the HIV-1-encoded envelope
glycoprotein complex (Env). Thus, the apoptogenic effect of
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Vpr is only revealed when using pseudotyped viruses, that is
genetically modified HIV-1 strains in which the endogenous
Env gene has been replaced by nonapoptogenic Env proteins
from other viruses.8,11 This underscores the idea that Env is,
at least in vitro, the principal apoptosis-inducing protein
encoded by the HIV-1 genome.12–15

The Env glycoprotein (gp) precursor protein (gp160)
undergoes proteolytic maturation to generate gp41 (mem-
brane inserted) and gp120 (membrane inserted or shed from
the cell surface). Soluble gp120 can stimulate proapoptotic
signal via an action on chemokine receptors (CXCR4 for
lymphotropic Env variants, CCR5 for monocytotropic Env
variants)12,16,17 (Figure 1). Although soluble gp120 has been
detected in body fluids, it has been doubted whether it would
reach concentrations high enough to induce cell death in
vivo.18 The membrane-anchored gp120/gp41 complex ex-
pressed on the surface of HIV-1-infected cells can induce
apoptosis through an interaction with uninfected cells expres-
sing the receptor (CD4) and the chemokine coreceptor
CXCR4 or CCR5. This type of bystander killing is obtained
by at least three distinct mechanisms (Figure 1). First, the two
interacting cells (one which expresses Env and the other that
expresses CD4 plus the coreceptor) may not fuse entirely and
simply exchange plasma membrane lipids, after a sort of
hemifusion process, followed by rapid death.19 Second, the
interaction between the two cells can induce cellular fusion
(cytogamy)14,15,20 followed by nuclear fusion (karyogamy)
within the syncytium.21 Syncytia are condemned to die from
apoptosis after a latency phase, presumably when conflicts in
cell cycle between the daughter nuclei are detected or when

the polyploidy checkpoint is activated.22 Third, it is possible
that virus-infected cells, on the point of undergoing apoptosis,
fuse with CD4-expressing cells, in which case apoptosis is
rapidly transmitted from one cell to the other and thus occurs
in a ‘contagious’ fashion.23

In this paper, we will review the lethal signal transduction
pathways elicited by Env in vitro and discuss their possible
contribution to HIV-1 pathogenesis in vivo.

Cell Killing by Soluble gp120

Soluble gp120 can induce apoptosis in lymphocytes,12 but
also in neurones,24–27 cardiomyocytes,17,28 kidney epithelial
cells29,30 and hepatocytes.31 These potent cytotoxic effects
have been implicated in the HIV-1-induced lymphodepletion,
HIV-associated dementia (also called HIV encephalitis or
neuro-AIDS), AIDS-cardiomyopathy, as well as AIDS asso-
ciated nephropathy and hepatopathy.
In lymphocytes, the effect of gp120 mainly involve interac-

tions with CD4 and CXCR4 (Figure 2). Antibody-mediated
crosslinking of CD4 (or CXCR4) in the absence of CD3
stimulation can sensitize T lymphocytes to apoptosis induc-
tion,32 and similar findings have been reported for the gp120-
mediated activation of T cells.33 Stimuli converging on CD4
may activate the CD95/CD95L-dependent death receptor
pathway or, alternatively, activate the Bax-dependent mito-
chondrial pathway to apoptosis.34,35 In Jurkat T cells, CD4
engagement by the Leu3a mAb results in a rapid and strong
increase of Lck kinase activity, its association with the T-cell

Figure 1 Four distinct mechanisms of Env-mediated killing. Soluble gp120 interacting with CD4 and chemokine receptors (CXCR4 or CCR5) can cause a single cell
killing (a). Membrane-bound Env (gp120/gp41) can induce apoptosis by interactions with its receptors through at least three distinct mechanisms. First, the interaction
between Env- and CD4/CXR4 (or CCR5)- overexpressing cells leads can trigger single cell killing through transient interactions with hemifusion-mediated exchange of
lipids on the membranes of the interacting cells (b). Second Env-expressing cells can fuse with Env-negative cells expressing suitable combinations of receptors and
coreceptors resulting in syncytium formation and death after a period of latency (c). Finally, preapoptotic Env-positive cells can kill CD4-positive cells upon fusion, in a
rapid ‘contagious’ process (d)
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receptor, upregulation of Bax, subsequent alterations of the
mitochondrial transmembrane potential (DCm), and apopto-
sis.36 This effect can be counteracted by Vav, a signaling
molecule that cooperates with CD28 to boost TCR signals.36

This may explain why CD28 can inhibit gp120-induced cell
death.37 A monoclonal antibody against CXCR4 also triggers
rapid T lymphocyte death preceded byDCm dissipation. In this
particular model, cell death occurs in a caspase-independent
fashion.32 Cell lines transfected with a truncated form of CD4
that binds gp120 but lacks the ability to transduce signals (due
to absence of the cytoplasmic domain of CD4), still manifest
DCm dissipation in response to gp120 acting on CXCR4.16

The signal triggered by gp120 involves chemokine receptors–
in neurons mainly CXCR4,16,17 and downstream of such
receptors, pertussis toxin-sensitive G proteins,17 the p38
mitogen-activated protein kinase pathway,38 and/or a rapid
cytosolic Ca2þ increase39 (Figure 2).
Gp120 induces apoptosis of cultured neurons and sensi-

tizes them to oxidative stress and excitotoxins. Gp120 also
causes neuronal dysfunction and death in rodents in vivo.40

Specific inhibitors of both the Fas/tumor necrosis factor-a/
death receptor pathway and the mitochondrial caspase
pathway can reduce the gp120-induced neuronal apoptosis.40

When added to mixed cultures of murine neurons and glial
cells, gp120 only causes apoptosis when such cells are
derived from p53-expressing mice. Reconstitution experi-
ments in which p53þ /þ and p53�/� neurons and glial cells
were mixed demonstrated that both cell types (neuronalþ
glial) were required for the lethal response to gp120 and that
both of them had to express p53 so that neurons would die
upon gp120 addition.25 Thus, p53 may participate in the
proapoptotic tuning of cellular networks. An accumulation of
p53 has been observed in the brain of patients with HIV-

associated dementia.41 Similarly, p53 accumulates in the
brain tissue from monkeys with simian immunodeficiency
virus (SIV) encephalitis.42 These observations suggest that,
at least in neurons, p53 may be a critical proapopotic protein
elicited by HIV-1 products (and in particular gp120) in vivo.

Single Cell Killing by Membrane-anchored
Env: The Kiss of Death

Bystander cells expressing CD4 and CXCR4 or CCR5 die
after coculture with cells engineered to express surface-
bound Env (gp120/gp41). Cell killing may be secondary to
fusion of the interacting cells, but it may also affect single
cells16,19,43–46 (Figure 3). Apparently, the ‘decision’ whether
cell fusion occurs or not is governed at the level of the CD4/
coreceptor-expressing cell, through yet-to-be-elucidated me-
chanisms, since different cell lines expressing such corecep-
tors (e.g. Jurkat cells and U937 cells) behave in a differential
fashion when exposed to the same Env-expressing cell type
(e.g. Env-tranfected HeLa cells) (Ferri et al., 2000a).45

Moreover, the caspase inhibitor Z-VAD.fmk, which can
reduce single cell killing, reportedly increases the amount of
syncytia formed in such cocultures.43 Agents that inhibit the
interaction between gp120 and CD4 or CXCR4 suppress both
syncytium formation and single cell killing by surface-exposed
Env.19,43,45 In addition, fusion inhibitors blocking the function
of gp41 (such as C34 and T-20) also block the death of single
target cells.19,43

Importantly, Env-induced single cell death is associated
with the gp41-mediated transfer of lipids from the membrane
of Env-expressing cells to the target cell, a phenomenon
which occurs without detectable cytoplasmic mixing, and thus
involves a hemifusion-like event.19 However, basic informa-
tion is lacking on this ‘kiss of death’ (Figure 3). It is not clear if
surface proteins are transferred during the cell–cell contact,

Figure 2 Mechanisms of gp120-induced killing. Soluble gp120 triggers cell
death through interactions with CD4 and/or CXCR4. Binding of gp120 to CD4
may stimulate the CD95/CD95L-dependent cell death pathway or trigger a Bax-
dependent mitochondrial apoptosis, which requires p56lck activity. In addition,
interactions between gp120 and CXCR4 can cause mitochondrial membrane
permeabilization (MMP) through pertussis toxin- sensitive G proteins (Gia), p38
MAPK pathway and/or Ca2þ -dependent mechanisms

Figure 3 Single cell killing triggered by cell membrane-bound Env. This
process implies transient membrane contacts and hemifusion events with
exchange of lipids between the interacting plasma membranes. The putative
implication of membrane protein transfer and/or specific receptor-mediated death
signals is also depicted
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andwhether a simplemembrane perturbation or more specific
signals lead to cell death. The exact cellular signals involved in
target cell killing remain largely unexplored apart from the fact
that they do not involve CD9516 and that they act in a rapid,
pertussis toxin-resistant fashion,43 leading to DCm loss and
subsequent plasma membrane permeabilization.19,43,45

Overexpression of Bcl-2 can inhibit single cell killing45 and,
as mentioned above, inhibition of caspases diverts single cell
killing to syncytium formation,43 suggesting that the process
does follow canonical apoptotic signaling pathways (Figure 3).

Syncytial Apoptosis Induced by Env

Syncytium formation resulting from the Env/CD4 interaction
leads to apoptosis, and this mode of cell death induction may
participate in the AIDS-associated depletion of CD4þ T
lymphocytes.15,47–50 A positive correlation between CD4þ T
cell decline and infection by syncytium-inducing HIV-1 or SIV-
1 variants has been established in vitro15,20,48,51 and, more
importantly, in vivo, in humans with AIDS,47,49 humanized
SCID mice,52 and monkeys.53

We have studied several in vitro models of syncytial
apoptosis, in particular a coculture system involving HeLa
cells transfected with the HIV-1LAI Env gene and HeLa cells
transfected with CD4.54 In such an in vitro model, apoptosis
occurs only in syncytia, as a result of a stepwise process
(Figure 4), affecting 50% of the syncytia around 36–48 h after
their formation. After an initial stage during which the cells
contain well separated nuclei with intact envelopes, nuclear
fusion (karyogamy) occurs.21 This nuclear fusion is the
expression of an abortive entry into the mitotic prophase
stimulated by the transient activation of the cyclin B-
dependent kinase-1 (Cdk1),55 accompanied by the permea-
bilization of the nuclear envelope, presumably due to the
Cdk1-mediated phosphorylation of lamin (which favors lamin
depolymerization and hence disassembly of the nuclear
envelope). It is only after karyogamy has occurred that
syncytia die from apoptosis.21,56–60

Molecular ordering of the process has been achieved using
a systemic approach involving microarrays, macroarray,
transcription factor profiling, and proteomics. This systemic
approach has been complemented by hypothesis-driven
research involving a battery of chemical inhibitors of kinases,
microinjection of specific inhibitors (of Bax, VDAC, AIF,
cytochrome c (Cyt c)), transfection with dominant-negative
constructs (of Cdk1, p38MAPK, MKK3/6, and p53), as well as
positive manipulations (microinjection of the cyclin B-depen-
dent kinase-1, transfection with mammalian target of rapa-
mycin (mTOR), microinjection of recombinant Bax or purified
Cyt c). After a transient activation of the mitotic progression
factor (MPF, composed of cyclin B and cyclin-dependent
kinase 1, Cdk1) with activation and phosphorylation of the
checkpoint kinase-2 (Chk2)59 aswell as activation of NF-kB,61

cells undergo an abortive entry into the prophase of mitosis,
where they arrest and manifest nuclear fusion (karyogamy)
within the heterokaryon.21 It is at that point (but not during the
interphase) that syncytia manifest p53 phosphorylation both
on serine 1555,62 and serine 46.61 Moreover, a series of p53
target genes including two proapoptotic Bcl-2 family numbers,

namely Bax and Puma, are transcribed,55,61,62 thus activating
the mitochondrial pathway of apoptosis with Cyt c-dependent
caspase activation.21,45,63,64 Thus, p53 emerges as a critical
mediator of syncytial apoptosis (Figure 4).
One of the p53-phosphorylating enzymes has been

identified as mTOR, which is enriched in karyogamic nuclei
and coimmunoprecipitates with p53.55,62 Blockade of the
aberrant advancement in cell cycle, by inhibition of Cdk1,
Chk2, or NF-kB strongly reduces the phosphorylation of p53
on both S15 and S46.58,59,61,62,65 However, inhibition of
mTOR with rapamycin only partially reduced the phosphory-
lation of p53 on S15 (p53S15P), by about 50–60%.55,61,62

Another p53 kinase that has been identified more recently,
cytoplasmic p38 mitogen-activated protein kinase (MAPK),
was found to undergo an activating phosphorylation (on T180/
Y182P) before karyogamy and to translocate into karyogamic
nuclei, where p38T180/Y182P colocalized and coimmuno-

Figure 4 Mechanisms of syncytial apoptosis. Syncytia arising from the fusion
of cells expressing Env with cells expressing CD4 and CXCR4 die after a latency
through a mitochondrion-dependent apoptosis pathway. Specific signals
mediated by plasma membrane receptor and/or a perturbation of cellular
metabolism induced by the fusion event can trigger a series of proapoptotic
kinases. Phosphorylation of the inhibitor of NF-kB (IkB) on serine 32 and on
serine 36 induces its degradation and initiates NF-kB-dependent transcription.
Cyclin B-dependent kinase-1 (Cdk1) is induced and causes an abortive entry into
the mitotic prophase, resulting in the fusion of several nuclei within the same
cytoplasm (karyogamy). mTOR and p38MAPK, two kinases activated by cell
fusion, phosphorylate p53 on serines 15 and 46, thereby facilitating p53-
dependent transcription. Puma and Bax, two p53 target genes, are induced and
trigger mitochondrial membrane permeabilization (MMP) and consequent
caspase activation
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precipitated with p53 alone.66 Activated recombinant p38
protein phosphorylated recombinant p53 on serines 15 and 46
in vitro. Inhibition of p38 MAPK by pharmacological inhibitors,
dominant-negative p38, or small interfering RNA (siRNA),
suppressed p53S46P (but not p53S15P), the expression
of p53-inducible genes, the conformational activation of
proapoptotic Bax and Bak, the release of Cyt c from
mitochondria, and consequent syncytial apoptosis. Impor-
tantly, we found that the combined inhibition of mTOR and p38
led to a much more pronounced reduction of p53S15P than
the inhibition of mTOR alone.66 Thus, the principal p53 kinase
acting on S46 is p38 MAPK, while there are at least two
kinases acting on S15, namely mTOR and p38 MAPK
(Figure 4).
Little is known on the upstream signals leading to the

activation of mTOR or p38 MAPK. In both cases, karyogamy
occurs independent from these kinases and is required for
their translocation to the nucleus. Syncytium formation of
HeLaCD4 cells, induced for instance by polyethyleneglycol, is
sufficient to activate p38 MAPK, to phosphorylate p53 on
serine 46 and to cause apoptosis, suggesting that CD4 and
chemokine receptor-mediated signaling is not required for
initiation of this particular proapoptotic cascade. Dominant-
negative MKK3 or MKK6 inhibited syncytial activation of p38,
p53S46P, and apoptosis in the HeLa CD4/HeLA Env
coculture system.66 However, the exact cascade of molecular
events linking syncytium formation to the activation mTOR
and p38 MAPK remains to be elucidated.
Can the results obtained with cell lines engineered to

overexpress the gp120/gp41 complex (that is in HIV-1-free
systems) be extrapolated to the pathophysiology of HIV-1
infection? Infection of primary human lymphoblasts in vitro,
with lymphotropic HIV-1 isolates, causes cell death mainly by
syncytium formation, associated with a series of alterations
that resemble those induced by Env in vitro, namely DCm

loss,46,67 mitochondrial release of Cyt c and AIF,67,68

increased ROS production,69 phosphorylation of p53 on
serine 15,55,67 phosphorylation of p53 on serine 46,61

activation of p38 MAPK,66 and the p53-dependent induction
of Bax67 and Puma.61 The amount of Bax is found to be
increased in the mitochondrion-enriched heavy membrane
fraction of HIV-infected CD4þ T cells as compared to
uninfected controls.45,67 In vitro, pharmacological inhibition
of Cdk1 (with roscovitine),55,62 mTOR (with rapamycin),55,62

p38 MAPK (with SB203580 or other inhibitors),66,70 or p53
(with cyclic pifithrin-a)61,62 suppresses the apoptosis induced
by HIV-1 infection, while caspase inhibition (with Z-VAD.fmk)
has no or little cytoprotective effects.45,68 Altogether, these
data suggest that the cascade of events delineated above
(cell fusion-activation of Cdk1/cyclin B-p53 phosphoryla-
tion on serine 15 and serine 46 by mTOR and p38 MAPK-
transcriptional activation of p53 target genes such as Bax and
Puma-Bax translocation to mitochondria with consequent
MMP-caspase independent cell death) is induced by HIV-1
infection in vitro.
A few reports suggest that the pathway delineated above is

also activated in HIV-1-infected individuals, in vivo, at least in
some cell types. Thus, cyclin B has been found to be
overexpressed in circulating T lymphocytes from HIV-1
carriers, and this upregulation disappears upon successful

antiretroviral therapy.71,72 Similarly, mTOR and the phospho-
neoepitope indicating phosphorylation of p53 on serine 15
were found to be overexpressed among a fraction of
peripheral blood mononuclear cells, correlating with viral
load,55,62 as well as with the frequency of cells expressing
tissue transglutaminase-2, a marker of preapoptosis.73 Highly
active antiretroviral therapy (HAART) corrected the abnor-
mally high mTOR and p53S15P levels of the patients.62

Syncytia containing p38 with phosphorylated thereonine 180
and tyrosine 182 (p38T180/Y182P) were detected in lymph
node biopsies from HIV-1 carriers, in the brain of patients with
HIV-1-associated dementia, and in cocultures of HeLa
expressing the HIV-1 envelope (Env) with HeLa cells
expressing CD4.61 Activated, phosphorylated p53 with phos-
phorylated serine 46 (p53S46P) was also detected in HIV-1-
induced syncytia, in vivo, in patients’ lymph nodes and brains
from patients with HIV-1-associated dementia, yet lacked in
uninfected control subjected or in brains of HIV-1-infected
patients without neurodegeneration.66 Thus, it appears
possible that the syncytial pathway leading to apoptosis (or a
closely related pathway) is activated in vivo, in HIV-1 carriers.

Contagious Apoptosis Facilitated by the
HIV-1 Envelope

HIV-1 can kill the cells that it infects (and which express Env
on the surface) in a cell-autonomous fashion. We recently
discovered that, when the apoptotic pathway is initiated in
Envþ cells (‘donor cells’), coculture with a healthy CD4þ
fusion partner (‘acceptor cells’) results in rapid apoptosis of
the syncytium and thus is ‘contagious’23 (Figure 5). As an
initiating signal, we could use a short pulse of staurosporine
treatment (3mM, 3 h) or, alternatively, actinomycin D or Vpr,
meaning that different modes of apoptosis induction in ‘donor’
cells can trigger contagious apoptosis. The cell-to-cell
transmission of the lethal signal was only observed when
the nuclei from donor cells exhibited preapoptotic chromatin
condensation (PACC), which precedes caspase activation, as
well DCm dissipation.74 However, no fusion between HeLa
Env and HeLa CD4 cells and no contagious apoptosis was
observed when the donor cells were already apoptotic.23

PACCmarks a preapoptotic event, upstream of the mitochon-
drial checkpoint. Cells with PACC exhibited partial chromatin
condensation with irregular nuclear contours, no Tunel
staining, no DNA fragmentation detectable by conventional
or pulse field gel electrophoresis, yet manifested comet
assay-detectable DNA strand breaks, as well as the phos-
phorylation of histone H2AX (on serine 139) and that of Chk2
(on threonine 68), which accumulated in discrete nuclear
speckles indicative of DNA damage.23,74

Transmission of the lethal signal from PACCþ cells to
healthy cells resulted in mitochondrial alterations (DCm loss
and Cyt c release), and caspase-dependent nuclear pyknosis
with chromatinolysis affecting both the donor and the acceptor
nuclei.23 Thus nuclear apoptosis affected all nuclei, irrespec-
tive of their origin, within the same syncytium simultaneously.
In the presence of caspase inhibitors, all nuclei of the
syncytium formed by fusion of the preapoptotic Env-expres-
sing and the healthy expressing cell manifested PACC,
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exhibited DNA lesions, and lost transcriptional activity.
Transmission of the lethal signal did not require donor cells
to contain a nucleus or mitochondrial DNA (and thus was
independent from DNA lesions), yet was inhibited at all levels
when two mitochondrion-stabilizing proteins, Bcl-2 or vMIA,
were overexpressed (Figure 5). Importantly, contagious
apoptosis was mechanistically different from spontaneous
syncytial apoptosis because it occurred more rapidly (killing
around 50% of the cells within 4–6 h) and because it was not
inhibited by pharmacological inhibitors of Cdk1 (e.g. roscov-
itine), mTOR (e.g. rapamycin), or p53 (e.g. cyclic pifithrin a).23

Thus, contagious apoptosis relies on mitochondrial permea-
bilization, upstream of caspase activation, linked to a yet-to-
be characterized cytoplasmic event, which is different from
the known actors involved in slow, spontaneous syncytial
death.
We specifically investigated whether fusion was required for

contagious apoptosis or whether hemifusion-like events
would be sufficient for the transmission of the lethal signal,
based on the knowledge that two T-lymphoid cell lines (Jurkat
andCEM) fusewith HeLa Env cells, while themyelomonocytic
U937 cells do not fuse with HeLa Env and rather undergo
transient interactions that involve transfer of plasma mem-
brane lipids through a hemifusion-like process, the ‘kiss of
death’.19 STS-pulsed HeLa Env cells with PACC did induce
killing of Jurkat or CEM cells, yet had no major apoptosis-
inducing effect on U937 cells, in accord with the notion that

fusion (rather than hemifusion) is required for cell death
induction. Contagious apoptosis could be induced in primary
human C4þ T lymphocytes, as well as in vivo, in the
peritoneal cavity of mice, in which human T cells were
exposed to dying Env-expressing cells.23

Based on these data, we speculate that contagious
apoptosis could potentially affect CD4þ T cells in HIV-1
infection. In conditions in which viral replication overwhelms
the cellular defense response and triggers (pre-)apoptosis of
the ‘donor’ Envþ cells, fusion with ‘recipient’ CD4þ cells
might contribute to the depletion of interacting CD4þ T
lymphocytes by contagious apoptosis.

Concluding Remarks

The HIV-1 envelope can cause the demise of uninfected cells
through a plethora of different mechanisms, as summarized in
this review. At least in vitro, cells expressing the CD4 receptor
and/or suitable coreceptors can die upon exposure to the
soluble Env derivative gp120 or to cells expressing Env
(gp120/gp41) on their surface, through a process that may or
may not involve hemifusion (the ‘kiss of death’), cytoplasmic
and nuclear fusion (‘syncytial apoptosis’), and/or rapid cell-to-
cell transmission of apoptotic signals (‘contagious apoptosis’).
Beyond Env and its coreceptors, the lethal signal transduction
may involve a number of kinases (e.g. IKK, p38 MAPK,
mTOR), some transcription factors (in particular, NF-kB and
p53), as well as typical ingredients of the mitochondrial
apoptotic cascade (Puma, Bax, Bak, Cyto c, etc.).
In view of the scarcity and the cost of animal models of HIV-

1 infection, it will be particularly important to investigate the
relative contribution of these processes and molecules to
AIDS pathogenesis by careful examination of circulating cells
or biopsies from HIV-1 carriers. Future will tell whether the
modulation of apoptosis induced by HIV-1 (rather than the
infection by HIV-1 itself) will provide some clinical benefit for
the control of one of the major menaces to human longevity
and civilized life.
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