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Abstract
Deregulation of apoptosis signalling is commonly found in
cancer and results in resistance to cytotoxic therapies.
Immunotherapy is a promising strategy to eliminate resistant
cancer cells. The transfer of T-lymphocytes during allogeneic
stem cell transplantation is clinically explored to induce a
‘graft-versus-tumor’ effect (GvT). Cytotoxic T-lymphocytes
(CTL), which are major effectors of GvT, eliminate cancer cells
by inducing apoptosis via multiple parallel pathways. Here, we
study in vitro and in vivo the susceptibility of murine cancer
cells engineered to express single antiapoptotic genes to CTL-
mediated cytotoxicity. Interestingly, we find that single inhibitors
of caspase activation, such as BCL-XL or dominant-negative
mutants of FADD and caspase-9, protect cancer cells against
antigen-specific CTL in vitro. Moreover, expression of BCL-XL
impairs the growth suppression by adoptively transplanted CTL
of established tumours in vivo. Hence, apoptosis defects that
provide protection to cytotoxic cancer therapies can confer
crossresistance to immunotherapy by tumour-reactive CTL.
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Introduction

Genetic deregulation of apoptosis signalling is a frequent
event in malignant transformation and tumour progression.1

Oncogenes, such as Myc and Ras, trigger p53-dependent
apoptosis and senescence via the gene products of the
INK4A locus.2,3 Accordingly, genetic alterations inactivating
the ARF/p53/RB pathway are strongly selected during
oncogenesis.4,5 In addition, impaired apoptotic signalling via
the endogenous (‘mitochondrial’) pathway of caspase activa-
tion downstream of p53 provides further selective advantage
in several cancer models.6–8 Hence, most established
cancers harbour inherent defects in this apoptotic signalling
cascade. Interestingly, clinically applied cytotoxic thera-
pies, such as g-radiation and most anticancer drugs, also
induce apoptosis via p53 and the ‘mitochondrial’ apoptotic
pathway.9,10 As a consequence, apoptosis defects selected
during oncogenesis and tumour progression can simulta-
neously confer resistance to anticancer therapy.11

Taking this into consideration, rationally designed
cancer treatments should be able to bypass such genetic
blocks in the transduction of apoptotic death signals. Cellular
immune effectors, such as tumour-specific cytotoxic
T-lymphocytes (CTLs), are thought to meet this requirement,
and combine it with their capability to induce target cell
apoptosis in a highly selective manner. Mechanistically, CTL
induce caspase activation and apoptosis via at least two
parallel pathways: (a) death receptors, such as CD95/Fas/
APO-1 expressed on tumour cells, interact with their
respective ligands expressed by CTL to trigger caspase
activation through the formation of the death-inducing
signalling complex (DISC).12 (b) Cytotoxic granules from
CTL contain perforin and granzyme B, which cooperatively
activate caspases of the cancer cells.13,14 In addition,
alternative death pathways mediated by granzyme A have
recently been characterized, which also feed into CTL-
induced apoptosis.15,16

Clinically, the therapeutic potential of CTL is broadly
explored in the context of allogeneic stem cell transplan-
tation (ASCT) protocols for resistant haematopoietic and
nonhaematopoietic cancers. Despite impressive clinical
successes, recurrent disease still is a major cause of mortality
following ASCT immunotherapy, and thus calls for further
improvement of this therapeutic modality. To dissect system-
atically the relative contribution of the various CTL-induced
pathways of apoptotic caspase activation to cancer cell
elimination, we studied in vitro and in vivo the susceptibility
of murine tumours engineered to express antiapoptotic genes
to the cytotoxic effects of alloreactive CTL and CTL specific
for a tumour-associated antigen (TAA). Despite the presence
of parallel proapoptotic effector mechanisms, we found
that the expression of single genetic inhibitors of caspase
activation, which predominantly inhibit one pathway, can
impair the tumour-suppressive activity of antigen-specific
CTL.
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Results
Generation and characterization of transgenic
murine cancer cells

To obtain genetically defined cancer cells, we generated
murine embryo fibroblasts (MEF) from p53�/� mice back-
crossed onto a human leucocyte antigen (HLA)-A2Kb

transgenic background (p53�/� A2Kb). These MEF were
sequentially transduced with retroviral vectors expressing the
oncogenes E1A and H-ras, and the human mutant p53V143A

cDNA as tumour-associated target for CTL. In coculture
experiments, allo-A2Kb-reactive murine CD8þ CTL (CD8
allo-A2) specifically lysed such A2Kb-transgenic, p53-recon-
stituted MEF and reduced their proliferative survival
(Figure 1a). The cytotoxicity of allo-A2Kb-reactive CTL
required cellular contact with the MEF targets (Figure 1b),
and was abolished by treatment with ethylenediaminetetraa-
cetic acid (EDTA) andmagnesium chloride (Figure 1c). These
results ruled out a role for secreted factors in our experimental
system, and pointed towards an effector mechanism pre-
dominantly involving the granule-dependent pathway.17

To study the relative contribution of key steps of the
caspase activation cascades in CTL-induced cytotoxicity, we
expressed a set of apoptosis inhibitors in these MEF cancer
cells (Suppl. Figure 1a): This included BCL-XL, which
counteracts the mitochondrial outer membrane permeabiliza-
tion (MOMP) through proapoptotic BCL-2 family proteins,18 a
catalytically inactive mutant caspase-9C287A (DN-Casp-9),
which is thought to prevent APAF-1-dependent caspase
activation,19 a truncated FADD protein (DN-FADD), which
interferes with death receptor-induced caspase activation,20

and a truncated X-linked inhibitor of apoptosis (XIAP) protein
(XIAPDRING), which is resistant to proteasomal degradation
and inhibits activated caspases.21 In order to avoid selection
phenomena and to discriminate MEF cancer cells from
cocultured CTL, bicistronic retroviral vectors were employed,
which expressed the respective apoptosis inhibitor and green
fluorescent protein (GFP). Successfully transduced MEF
populations were obtained by fluorescence-activated cell
sorting.
To confirm biologically relevant expression levels of the apo-

ptosis inhibitors, we treated the respective MEF populations
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Figure 1 Antigen-specific, contact-dependent lysis of p53�/� A2Kb MEF cancer cells by CTL via the granule-mediated pathway. (a) The 5 h 51Cr release assay (upper
panel) and proliferative survival (lower panel) of p53�/� A2Kb MEF coincubated with allo-A2Kb-reactive (CD8 allo-A2, open boxes) or control CTL (CD8� A2Kb FluM1,
closed triangles). (b) The 5 h 51Cr release assay of p53�/� A2Kb MEF coincubated with allo-A2Kb-reactive (CD8 allo-A2, open boxes) or control CTL (CD8� A2Kb

CD19, closed triangles) in the absence (upper panel) or presence (lower panel) of separating membrane inserts. Triton X-100 (open diamonds) indicates the maximum
51Cr release as achieved by incubation with membrane-permeable detergent. (c) The 5 h51Cr release assay (upper panel) and proliferative survival (lower panel) of
p53�/� A2Kb MEF coincubated with allo-A2Kb-reactive (CD8 allo-A2) CTL in the absence (closed triangles) or presence (open triangles) of 4 mM EDTA and 2 mM
MgCl2. The insert demonstrates that the predominantly CD95-dependent lysis of HepG2 targets by allo-A2Kb-reactive CTL is not inhibited by EDTA/MgCl2. Mean values
of duplicates of one of at least three independent experiments are shown
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with cytotoxic drugs, UV radiation and TNF (Supplemental
Figure 1b). As expected, expression of BCL-XL, DN-Casp-9
or XIAPDRING conferred protection against apoptosis induced
by cytotoxic drugs and UV radiation, whereas DN-FADD
significantly reduced apoptosis in MEF treated with TNF plus
cycloheximide.

Inhibitors of caspase activation protect cancer
cells against CTL lysis in vitro

To study the activity of our genetic inhibitors of apoptosis
against CTL-mediated cytotoxicity, we devised two CTL
populations with the following specificities: allo-A2Kb-reactive
CTL lyse targets that express the HLA-A*0201 antigen, and
A2 p53.264 CTL that lyse targets presenting the human p53
(264–272) epitope in the context of HLA-A*0201.22,23 The
expression of BCL-XL, but none of the other apoptosis
inhibitors, significantly protected MEF against cytolysis in
coculture experiments with allo-A2Kb-reactive CTL. This
protection translated into a two- to three-fold increase in
proliferative survival of BCL-XL-expressing MEF in vitro
(Figure 2). When studying the human mutant p53V143A as
CTL target, a different picture emerged. Whereas XIAPDRING

expression conferred no protection against HLA-A*0201-
restricted CTL specific for the human p53 (264–272) epitope

(A2 p53.264), DN-FADD and DN-Casp-9 expression signifi-
cantly reduced cytolysis in vitro. Again, BCL-XL expression
resulted in the strongest protection of cancer cells against
p53-specific CTL lysis. Moreover, BCL-XL increased the
proliferative survival of MEF cocultured with p53-specific CTL
approximately 10-fold, whereas DN-FADD or DN-Casp-9
failed to do so (Figure 2). In summary, expression of BCL-XL
conferred the strongest protection against the cytotoxic
effects of two different, antigen-specific CTL populations.

BCL-XL protects against CTL-mediated
cytotoxicity by preventing mitochondrial damage
and caspase activation

BCL-XL is thought to prevent caspase activation and
apoptosis by sequestering proapoptotic BH3 proteins, such
as BIM or BID.24 Recently, it was shown that apoptosis
induced by recombinant granzyme B, a major effector of CTL-
mediated cell death, may involve an activating cleavage of
BID to induce MOMP and apoptosis, and hence can be
blocked by BCL-2 or BCL-XL.25–27 However, conflicting
observations on the protection by BCL-2 against apoptosis
induced by natural T cells, which harbour additional cytotoxic
effectors besides granzyme B, have been reported.28–31

To confirm that the BCL-XL-mediated protection in our
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Figure 2 Expression of apoptosis inhibitors protects cancer cells against CTL-induced cytotoxicity in vitro. CTL-induced specific lysis of MEF cancer cells expressing
DN-FADD (open triangles), BCL-XL (closed diamonds), DN-Casp-9 (open boxes), XIAPDRING (closed triangles) or control vector (closed boxes) in representative 5 h
51Cr release assays (upper panel). Mean colony formation (logarithmic scale) of MEF cancer cells after coincubation with CTL (lower panel). The specificities of the
respective CTL are indicated; CD8� A2Kb FluM1 served as negative control CTL. Mean values of duplicates of at least three independent experiments are shown
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Figure 3 BCL-XL prevents CTL-induced caspase activation, mitochondrial damage and apoptosis. (a) MEF cancer cells expressing BCL-XL or control vector were
loaded with the fluorescent dye DiI and coincubated with allo-A2Kb-reactive CTL (CD8 allo-A2) at an E : T of 0.1; effector caspase activity was detected by staining with
FITC-VAD. The numbers indicate the fraction of DiIþ /FITCþ MEF of one representative of four independent experiments. Influenza matrix peptide-specific CTL
(CD8� A2Kb FluM1, E : T of 1) served as negative control. (b) Timing of apoptotic events in a representative time lapse of 10 individual MEF cancer cells selected from
one field expressing BCL-XL or control vector following coincubation with p53-specific CTL (A2 p53.149). ‘T’ denotes loss of Dcm (indicated by the loss of TMRE
staining), ‘B’ denotes membrane blebbing of GFP-positive cells and a closed diamond indicates plasma membrane permeabilization (indicated by PI uptake), which was
quickly followed by rounding up and detachment of the cells. (c) Mean time (þ S.E.) of the onset of loss of Dcm (open bars), membrane blebbing (hatched bars) and PI
uptake (closed bars) in representative time lapses of at least 10 MEF cancer cells per field expressing the indicated apoptosis inhibitors that were coincubated with p53-
specific CTL. The asterisk indicates that blebbing and PI uptake were not observed during the assay time of 5 h in BCL-XL-expressing MEF
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experimental system results from the prevention of MOMP
and caspase activation, we studied the apoptosis of MEF
incubated with CTL in two different assays at a single-cell
level. The expression of BCL-XL profoundly inhibited caspase
activation in MEF cocultured with allo-A2Kb-reactive CTL
(Figure 3a). This was accompanied by a delay in CTL-induced
mitochondrial toxicity and subsequent apoptotic events, as
detected by time-lapse fluorescence microscopy (Figure 3b).
BCL-XL most significantly delayed the CTL-induced loss of
the mitochondrial transmembrane potential Dcm (Figure 3c).
Moreover, BCL-XL prevented apoptotic blebbing and per-
meabilization of the cell membrane at least for the assay
duration of 5 h (Figure 3c). Expression of DN-FADD resulted
in a less pronounced delay in apoptotic membrane changes,
which is consistent with an additional contribution of death
receptor signalling to apoptosis induced by p53-specific CTL
(Figures 2 and 3c). As expected, BCL-XL expression
conferred a strong protection of our MEF cancer cells against
apoptosis induced by radiation or cytotoxic drugs (Supple-
mental Figure 1b). Of the four apoptosis inhibitors used in our
studies, only BCL-XL enabled transformation of murine
fibroblasts by a single oncogene (Supplemental Figure 1c).
Taken together, prevention of MOMP and caspase activation
by BCL-XL seems to provide a strong selective advantage for
cancer cells in terms of oncogenic transformation, radiation or
drug resistance, as well as resistance against CTL-mediated
cytotoxicity in vitro.

BCL-XL abolishes CTL-mediated tumour
suppression in vivo

To study whether antiapoptotic BCL-XL also confers in vivo
resistance against CTL-mediated tumour suppression, mur-
ine fibrosarcoma tumours were established by subcutaneous
injection of MEF in NOD/SCIDmice. MEF expressing BCL-XL
exhibited no growth advantage over vector-expressing control
MEF in vitro (Figure 4a), and BCL-XL or vector MEF
fibrosarcomas developed at similar rates in vivo, resulting in
palpable flank tumours within 2 weeks of injection (Figure 4b).
Comparing the in vivo growth of established tumours
expressing BCL-XL or control vector in NOD/SCID mice
(Figure 5a), we found that a single adoptive transfer of allo-
A2Kb-reactive CTL strongly reduced the growth of vector-
expressing fibrosarcomas. In contrast, the expression of
BCL-XL impaired this tumour-suppressive activity of allo-
A2Kb-reactive CTL in vivo (Figure 5b). To confirm and extend
this observation, we compared the tumour-suppressive
activity of CTL reactive to the HLA-A*0201-presented human
p53 (149–157) epitope (A2 p53.149) on vector and BCL-XL-
expressing fibrosarcomas. To control for nonspecific T-cell
effects, H-2Db/influenza PR8 nucleoprotein (366–374)-spe-
cific CTL (DbNP) were used. Again, the adoptive transfer of
TAA-specific CTL resulted in a substantial growth retardation
of vector tumours, whereas BCL-XL-expressing fibrosarco-
mas exhibited resistance against tumour-reactive CTL in vivo
(Figure 5c). The expression of transgenic BCL-XL or its
absence was confirmed by immunoblotting analysis of
fibrosarcomas obtained at termination of the experiment
(Figure 5d). Hence, antiapoptotic BCL-XL proved to confer

resistance of established murine fibrosarcomas against the
growth suppression by adoptively transplanted, tumour-
reactive CTL in vivo.

Discussion

During malignant transformation, cancer cells have to evade
several tumour suppressor mechanisms, including apoptotic
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cell death. In general, this is achieved by genetic and/or
epigenetic inactivation of key molecules involved in these
processes, such as the p53 tumour suppressor protein and its

positive regulator ARF, or amplification of its negative
regulator MDM2. More than a decade ago, it has been
experimentally demonstrated that inactivation of the p53
pathway not only enables oncogenic transformation but also
confers resistance to apoptosis induced by clinically applied
cytotoxic therapies including g-radiation and anticancer
drugs.9 More recently, the molecular pathways how p53
signals apoptosis have been characterized. In most cell types,
this is achieved through the proapoptotic members of the
BCL-2 protein family such as the ‘BH3-only’ proteins PUMA
and NOXA, as well as the ‘BH123’ protein BAX.32–35 The
coordinated action of these BCL-2 family proteins regulates
MOMP and the subsequent release of mitochondrial apopto-
genic factors into the cytoplasm,18 which in turn enable the
formation of the APAF-1 apoptosome complex to activate
caspase-9. Active caspase-9 then cleaves and activates the
executioner caspase zymogens to kill the cell ultimately.19

Results from experimental cancer models suggest that
defects in the apoptotic signal transduction downstream of
p53 might facilitate oncogenic transformation and confer drug
resistance.6,8 Accordingly, functional blocks at the level of the
BCL-2 family proteins and at the apoptosome level have been
described in cancer cell lines and primary tumour samples.36–41

As a consequence, rationally designed therapies should
aim to activate cancer cell apoptosis via mechanisms that
bypass these genetic blocks in the p53/BAX/APAF-1/cas-
pase-9 pathway. One possible strategy is the activation of
death receptors, such as CD95/Fas/APO-1 or the TRAIL
receptors, by recombinant ligands or activating antibodies.42

At least in some cell types, death receptor activation and
subsequent DISC formation are sufficient to activate directly
effector caspases and induce apoptosis. However, in ‘type II
cells’, a mitochondrial amplification step, which can be
blocked by the overexpression of BCL-2 or combined
deficiencies of BAX and BAK, seems required for effective
caspase activation via the death receptor pathway.43 More-
over, death receptor activation is nonspecific and thus may
result in a substantial toxicity of nonmalignant tissues.44,45 In
contrast, TAA-specific CTL only lyse tumour cells, which
present the respective target antigen within the context of the
proper class I major histocompatibility complex molecule.
Further, CTL are thought to induce target cell apoptosis via
several parallel pathways, including death receptor activation,
perforin/granzyme B and granzyme A,12–16 and thus should
be able to overcome single apoptosis defects selected during
malignant transformation.
Surprisingly, our present results indicate that the expres-

sion of some inhibitors of apoptotic caspase activation not
only results in resistance to radiotherapy and cytotoxic drugs
but can also protect cancer cells against CTL-based
immunotherapy. Depending on the type of CTL and experi-
mental antigen employed, inhibitors of the mitochondrial
pathway of caspase activation, such as BCL-XL and DN-
Casp-9, as well as inhibition of death receptor-mediated
apoptosis by DN-FADD suppressed CTL-induced cancer cell
lysis in short-term assays. However, only BCL-XL expression
translated into a significant advantage in terms of proliferative
survival in vitro. This discrepancy could be explained by the
prevention of the release of several mitochondrial apopto-
genic factors, such as cytochrome c, SMAC/DIABLO or

Figure 5 BCL-XL protects fibrosarcomas against the suppression of tumour
growth by adoptively transplanted CTL in vivo. (a) Schematic representation of
the course of the experiments. (b) Growth of established A2Kb MEF
fibrosarcomas expressing BCL-XL (right panel) or control vector (left panel) in
NOD/SCID mice following the adoptive transfer of allo-A2Kb-reactive CTL plus IL-
2 (closed circles), or IL-2 treatment alone (open circles). Bidimensional tumour
sizes were normalized to the maximum size of control tumours treated with IL-2
alone, and mean values7S.E. of 16 tumours in eight mice are given. (c) Growth
of established MEF fibrosarcomas expressing BCL-XL (right panel) or control
vector (left panel) in NOD/SCID mice following the adoptive transfer of p53-
reactive CTL (A2 p53.149) and IL-2 (closed boxes), or irrelevant CTL (DbNP) and
IL-2 treatment (open boxes). Bidimensional tumour sizes were normalized to the
maximum size of control tumours treated with DbNP CTL plus IL-2, and mean
values7S.E. of 28 tumours in 14 mice are given. (d) Immunoblotting of tumour
cell extracts obtained from 14 fibrosarcomas of seven mice from experiment (c)
using primary antibodies against Bcl-X and Actin. ‘V’ denotes control vector, and
‘B’ denotes BCL-XL expressing tumours
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HtrA2/OMI, through BCL-XL. In contrast, DN-Casp-9 is
thought to interfere selectively with APAF-1-dependent
caspase activation, and seems insufficient to block granzyme
B-induced apoptosis in vitro.46,47 This is in agreement with
recent genetic evidence demonstrating that the loss of
postmitochondrial activators of apoptosis, such as caspase-
9 or APAF-1, fails to accelerate Myc-induced tumorigenesis in
a murine model of lymphoma development or to prevent
proliferative cell death in MEF and haematopoietic cells.48,49

Moreover, BCL-XL also prevents death receptor-mediated
caspase activation in MEF cancer cells, which behave like
type II cells requiring mitochondrial amplification of the
caspase-8 signal (not shown). DN-FADD, however, exclu-
sively blocks the death receptor pathway,20 leaving the
mitochondrial and granule-mediated pathways intact. Finally,
BCL-XL like BCL-2 prevents nonapoptotic mitochondrial
death pathways,50 which could impact on the outcome of
CTL-induced reduction of proliferative survival. In conclusion,
MOMP regulated by the BCL-2 family proteins is a rate-
limiting step in CTL-mediated cancer cell apoptosis in our
experimental system. The expression of antiapoptotic BCL-2
family proteins adds to established immune escape mechan-
isms of tumour cells, such as the expression of FLIPL or
serpins.51–53

In extension of our results obtained in vitro, MEF
fibrosarcomas expressing BCL-XL also exhibited protection
against tumour suppression by adoptively transferred, allo-
reactive and TAA-specific CTL in vivo. This system, which is
regarded a valid in vivo model for the study of the activity of
TAA-specific CTL,54,55 mimics the therapeutic principle of
graft-versus-tumor (GvT) effect elicited during ASCT. Cur-
rently, ASCT is clinically explored in a variety of drug-resistant
cancers, including refractory or high-risk lymphoma, myelo-
ma, breast cancer and renal cell cancer. Such drug-resistant
cancers frequently exhibit upregulation of antiapoptotic
proteins,11 and the survival advantage of resistant tumour
cell clones under the selective pressure of conventional
cytotoxic cancer therapies may very well result in cross-
resistance against immune-mediated tumour cell destruction.
Our results demonstrate that the efficacy of ASCT especially
in advanced-stage cancer patients may be hampered by such
‘crossresistance’ mechanisms.
In conclusion, despite their sophisticated armament, CTL

can be seriously impaired in their ability to destroy drug-
resistant cancer cells. The expression of FLIPL or serpins can
protect cancer cells against CTL-mediated apoptosis.51–53

However, those molecules fail to provide resistance against
cytotoxic cancer therapies, which signal caspase activation
via the ‘mitochondrial’ pathway. Our present data demon-
strate that further genetic inhibitors of caspase activation are
sufficient to confer resistance to adoptively transplanted,
tumour-reactive CTL. We identify MOMP, which is initiated by
granzyme B and caspase-mediated cleavage of BID, as a
rate-limiting ‘bottle-neck’ in CTL-induced apoptosis. At least in
the present experimental system, parallel pathways triggered
by death ligands or direct activation of caspases and
nucleases via perforin and granzymes A and B were
insufficient to compensate for the shut down of the ‘mitochon-
drial’ pathway of caspase activation and caspase-indepen-
dent death mechanisms by BCL-XL. Interestingly, MOMP is a

key step in radiation- and drug-induced apoptosis of cancer
cells, and also contributes to tumour suppression via the p53
pathway. Hence, genetic alterations selected during onco-
genesis and cancer treatment can confer ‘crossresistance’ to
CTL-induced tumour destruction. Combining CTL-based
therapies with agents directly targeting the BCL-2 family
proteins56,57 or postmitochondrial caspase activators58,59

could be valid strategies to overcome such ‘immunoresis-
tance’ of cancer.

Materials and Methods

Cell lines

Fibroblasts were generated from day E14 embryos of p53�/� A2Kb

transgenic mice60 following standard techniques, and the respective
genotypes were confirmed. These murine embryo fibroblasts (MEF) were
transformed by parallel transduction with retroviral vectors expressing E1A
and H-ras (gifts from Dr. S Lowe) as described previously.35 A cDNA
encoding the human p53V143A mutant was subcloned into the retroviral
vector pBabeBleo to transduce sequentially the oncogene-transformed
MEF. Several antiapoptotic cDNA (encoding BCL-XL, DN-FADD, DN-
Casp-9 and XIAPDRING) were subcloned into the vector pMxIG (a gift from
Dr. T Kitamura), and inserts were confirmed by sequencing. Retroviral
virions were generated by transient cotransfection of 293T cells with the
helper plasmid pCL_Eco.61 HLA-A*0201/human p53 (149–157)- and
(264–272)-specific CTL derived from A2 transgenic mice, HLA-A*0201/
influenza matrix (58–66)- and H-2Db/nucleoprotein (366–374)-specific
CTL derived from human CD8� A2Kb transgenic and C57BL/6 mice,
respectively, as well as allo-A2Kb-reactive CTL from human CD8
transgenic mice, have been described previously.22,23

Immunoblotting

Immunoblotting was performed as described previously35 using primary
antibodies against caspase-9 (9CSP02, Chemicon), FADD (rabbit
antiserum, Calbiochem), XIAP (rabbit antiserum, R&D Systems), BCL-X
(2H12, Pharmingen), Actin (C4, ICN) and p53 (CM5, Novocastra).

Cytotoxicity and apoptosis assays

The 5 h 51Cr release cytotoxicity assays were carried out as described.22

Apoptosis was detected by cell cycle analysis following staining with
propidium iodide (PI). For detection of caspase activation, MEF were
loaded with the fluorescent marker DiI (Molecular Probes) and then
cocultured for 30–45 min with CTL. Following incubation with FITC-VAD
(Oncogene), the fraction of DiIþ /FITCþ cells was determined by flow
cytometry. To assay proliferative survival, 5000 adherent MEF were
incubated in 96-well plates with CTL effectors at the indicated E : T ratios
for 4.5 h. Following removal of CTL, MEF were harvested and replated in
35 mm dishes for a 7-day culture period. The resulting colonies were fixed,
stained and counted.

Time-lapse microscopy

GFP-expressing MEF targets were plated on Thermanox chamber slides
(Nunc) and stained with the mitochondrial marker tetramethylrhodamine
ethylester (TMRE, 75 nM for 30 min, Molecular Probes). CTL (A2 p53.149)
resuspended in phenol-free medium supplemented with PI (50 mg/ml)
were added at an E : T of 10, and the medium was overlaid with mineral oil.
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Time-lapse images (excitation frequencies 488 and 560 nm) were taken in
2 min intervals on an Olympus IX-70 inverted microscope with a heated
stage and a digital imaging system for 300 min. Analyses were performed
using the TILL vision 4.0 software.

Adoptive CTL transfer into tumour-bearing NOD/
SCID mice

Irradiated (150 rad) NOD/SCID mice received bilateral subcutaneous
injections of 5� 106 MEF (BCL-XL MEF right flank, vector MEF left flank).
Following the outgrowth of palpable fibrosarcomas, the mice were treated
with single tail vein injections of 2� 107 CTL resuspended in saline (day
13) as well as two subcutaneous doses of 6� 105 IU recombinant human
interleukin-2 (IL-2) resuspended in saline and incomplete Freund’s
adjuvant (days 13 and 20). Tumour size was measured bidimensionally
using a calliper.
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