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Abstract
The heat shock response and death receptor-mediated
apoptosis are both key physiological determinants of cell
survival. We found that exposure to a mild heat stress
rapidly sensitized Jurkat and HeLa cells to Fas-mediated
apoptosis. We further demonstrate that Hsp70 and the
mitogen-activated protein kinases, critical molecules
involved in both stress-associated and apoptotic res-
ponses, are not responsible for the sensitization. Instead,
heat stress on its own induced downregulation of FLIP
and promoted caspase-8 cleavage without triggering cell
death, which might be the cause of the observed sensitiza-
tion. Since caspase-9 and -3 were not cleaved after heat
shock, caspase-8 seemed to be the initial caspase activated in
the process. These findings could help understanding the
regulation of death receptor signaling during stress, fever, or
inflammation.
Cell Death and Differentiation (2003) 10, 1137–1147. doi:10.1038/
sj.cdd.4401278
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Introduction

Organisms have developed numerous strategies to protect
cellular functions during periods of environmental stress. On
the other hand, an equally important adaptation is the
destruction and removal of irreparably damaged cells, when
the protective mechanisms have been overwhelmed. Regu-
lated cell death defends the organism against infected or
mutated cells and thereby plays an important role in the
maintenance of homeostasis. Stress-induced apoptosis
deletes damaged cells through an intrinsic pathway that
culminates in the activation of effector caspases.1 The
intrinsic mode of apoptotic induction is efficiently regulated
by stress-induced protection mechanisms. Cells can also be
eliminated under physiological conditions through an extrinsic
pathway by activation of cell surface death receptors.2 This
extrinsic pathway is an essential homeostatic mechanism for
controlling cell numbers, especially in the immune system.
Therefore, it is important to determine whether the protective
mechanisms that inhibit stress-induced apoptotic pathways
could also influence the response of cells to death receptor-
mediated cell killing.
Death receptors (DRs), such as the Fas-, TNF-, and TRAIL-

receptors (FasR, TNF-R1, and TRAIL-R), are membrane
proteins capable of inducing apoptosis, and belong to the
TNF-R family.2–4 Upon ligand binding, the DRs oligomerize
and recruit a number of proteins to form a death-inducing
signaling complex (DISC). Proteins in the DISC can either
bind directly to the DR or with the aid of intermediate adaptor
proteins, such as FADD, or, in the case of TNF-R1, through
the combined binding of FADD and TRADD.5,6 As an
essential element in the apoptotic cascade of most DRs,
FADD recruits caspase-8 to the DISC. After association to the
complex, caspase-8 is activated and provokes the apoptotic
signaling cascade (for review, see Cohen7). FasR signaling
can either directly activate downstream effector caspases or
trigger the mitochondrial apoptosis amplification loop. The
latter involves caspase-8-mediated activation of the proapop-
totic Bcl-2 family member, Bid, followed by release of
cytochrome c, which binds to the apoptosome complex
formed by Apaf-1 and caspase-9. In turn, caspase-9 cleaves
more caspase-8 as well as downstream effector caspases.
Other signaling modules such as RIP proteins,8,9 Daxx,10

FLIP,11 or the whole NF-kB pathway5,12 interact with the
DISC. FLIP is especially interesting, as it acts as a
physiological inhibitor of caspase-8.11,13 Apart from proapop-
totic signaling, there are also other proteins known to be
activated by FasR stimulation, for example the mitogen-
activated protein kinases (MAPKs) ERK1/214,15 and c-Jun N-
terminal kinase (JNK)16,17 are activated in many model
systems after DR stimulation. Altogether, these signaling
proteins can modulate the outcome of receptor activation.
Prolonged exposure to high temperatures is harmful for

cells as it promotes protein damage. To cope with moderate
and transient exposures to heat stress, the cells respond by
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upregulating the expression of heat shock proteins (Hsps),
which act as chaperones to prevent protein aggregation,
help proper refolding of denatured proteins, and divert
permanently damaged proteins to proteasome-mediated
degradation (for review see Lindquist and Craig,18 Hartl and
Hayer-Hartl,19 and Morimoto20).The heat shock response
involves rapid and transient activation of the transcrip-
tion factor heat shock factor 1 (HSF1), triggered by trimeriza-
tion, phosphorylation, and subcellular relocalization (for
review see Wu,21 Pirkkala et al.,22 and Holmberg et al.23).
The activated HSF1 binds to heat shock elements
(HSE) in the promoters of Hsp genes and induces expres-
sion of Hsps, the most abundant of which is Hsp70. Other
signaling events take place during the heat shock
response, including proapoptotic signaling, which is neces-
sary to eliminate those cells that are damaged beyond
repair. For instance, the stress-activated protein kinase
JNK, which has been implicated in stress-induced apopto-
sis, is activated during heat shock (for review see Kyriakis
and Arruch 24).
Hsps, the survival factors generated by heat stress, have

been well documented. Indeed, it has long been known
that a mild heat shock can induce thermotolerance
against a subsequent heat stress,25 or crosstolerance to
other apoptotic stimuli by Hsp-mediated inhibition of cell
death.25–27 The levels of Hsp70 expressed during the
first stress remain elevated as the second stress occurs,
permitting repair of the cell at the outset of the stress, and
more specific inhibition of death pathways before their
activation. Thus, Hsp70 has been shown to inhibit JNK,
which is a mediator of the stress-induced death signals.28–30

Hsp70 is also able to interfere more directly with the apoptotic
machinery, as it has been shown to inhibit the apoptosome
downstream of the mitochondria,31,32 to prevent cytochrome
c release from the mitochondria of stressed cells,33 to stop
the TNF-R1 death pathway downstream of caspase-3
activation,34 and, more recently, to prevent Bid cleavage.35

The interest in Hsp70 antiapoptotic properties has increased
as they were shown to be constitutively expressed in a
number of tumor cells, preventing their removal by apoptosis
induction.1,34,36,37

Although it is well established that Hsp70 has an inhibitory
effect on TNF-mediated apoptosis, the relations between
stress and apoptosis induced by the other DRs have
been poorly studied. Some reports describe a sensitizing
effect of stress-related proteins on Fas-mediated apoptosis.
Overexpression of Hsp70 has thus been suggested to
sensitize Jurkat cells to Fas-induced apoptosis38 and an
active HSF1 mutant was observed to render cells more
susceptible to Fas killing.39 Furthermore, stress-activated
protein kinases, such as JNK, which are also activated by
DRs, have been implicated as especially important for
induction of apoptosis.40 In this study, we examined the
possible interactions between the stress response and FasR
signaling. We show that heat stress sensitizes Jurkat and
HeLa cells to Fas-induced apoptosis and that this sensitiza-
tion is not mediated by different members of the MAPK
signaling protein family. We also observed that expression of
Hsp70 provides neither protection nor sensitization to FasR-
mediated apoptosis in this model system. Finally, we show

that heat stress is able to rapidly downregulate FLIP and
activate caspase-8 cleavage independently from activation of
apoptosis, indicating that the sensitization to Fas is likely to be
mediated by a facilitated caspase-8 activation in the absence
of FLIP.

Results

Heat shock sensitizes cells to Fas-mediated
apoptosis independently from Hsp70 expression

A mild heat shock can induce thermotolerance to a sub-
sequent thermal stress. We wanted to determine whether
heat shock would also protect against apoptosis induced
by FasR in Jurkat cells. Surprisingly, exposure to a
30-min heat shock at 421C prior to FasR stimulation did not
inhibit, but rather increased the amount of apoptosis
compared to cells subjected to Fas treatment alone. The
effect was readily visible in phase contrast microscopy
(Figure 1a) and obvious by quantification with flow
cytometry after labeling of apoptotic cells with Annexin-V
(Figure 1b). A stress as mild as 15min at 421C, followed by a
2-h Fas treatment, was sufficient to increase the amount of
apoptotic cells (Figure 1b). This was not restricted to Jurkat
cells or the use of Fas antibody. Indeed, we observed that
HeLa cells subjected to heat shock were also sensitized to
Fas-mediated cell death induced by treatment with Fas ligand
(Figure 1c).
The heat shock response in Jurkat cells consisted of a rapid

activation of HSF1 (Figure 2a), followed by upregulation of
Hsp70 within 2 h (Figure 2b). FasR stimulation on its own did
not induce HSF1 DNA-binding activity or Hsp70 expression
(Figure 2a,b), thereby showing that the death receptor and
heat stress signal through distinct pathways. Furthermore,
FasR signaling did not affect the heat shock-induced HSF1
activation and Hsp70 expression (Figure 2a,b), suggesting
that the sensitization does not occur through modulation of
Hsp expression by FasR.
Hsps are known to protect against various apoptotic

stimuli41 (for a review, see Jäättelä37). Heat shock-induced
expression of Hsps, however, did not seem to affect Fas-
mediated killing. Indeed, the sensitization occurred, whether
Fas was applied right after heat shock, before induction of
Hsp70, or after 2-h recovery at 371C, when the levels of Hsp70
were already high. To examine the protective effect of Hsp70
against Fas-induced cell death under nonstressful conditions,
we used a Jurkat-based cell line expressing Hsp70 and GFP
upon induction with doxycycline (Hsp70-GFP-tetON;
Figure 3a). GFP-positive cells were not protected as both
mitochondrial depolarization and nuclear fragmentation oc-
curred (Figure 3b), showing that Hsp70 cannot rescue Jurkat
cells from Fas-mediated cell death, which could explain why
heat shock did not induce crosstolerance to another apoptotic
stimulus. For further assessment, we quantified Fas-induced
apoptosis in control cells and cells expressing Hsp70.
However, FACS measurement of apoptosis did not reveal
any significant protection by Hsp70 from Fas-induced
apoptosis in Jurkat cells (Figure 3c). Additionally, this result
also demonstrates that Hsp70 could not render the cells
sensitive to Fas killing.
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Traditional stress-induced signaling pathways are
not involved in the sensitization process

Members of the MAPK family are good candidates for
modulating the fate of cells subjected to both stress and
apoptotic stimuli. Especially, the JNK pathway is an essential
signaling module involved in stress-induced apoptosis (for
review, see Kyriakis and Arruch24). JNK is also activated by
FasR stimulation in a number of cell lines, although it has been
shown to be dispensable for Fas-mediated apoptosis.17,42

However, a stress-induced activation of JNK preceding FasR
stimulation could still result in increased apoptotic signaling. In
Jurkat cells, JNK was activated both by heat shock and by
FasR stimulation (Figure 4a). To disrupt the JNK pathway, we

used a GFP-tagged dominant negative mutant (MKK4-DN) of
the JNK activator MKK4, which has been shown to be
necessary for heat shock-induced JNK activation.43 Quanti-
fication of apoptosis among GFP-positive cells was carried
out by fluorescence microscopy (Figure 4b), and flow
cytometry. Surprisingly, expression of MKK4-DN did not
prevent the heat shock-induced increase in apoptotic Jurkat
cells after FasR stimulation (Figure 4c), indicating that JNK is
not responsible for the sensitization. Furthermore, inhibition of
the other MAPK family members, p38 and ERK1/2, using
SB203580 and PD98059, respectively, resulted in higher
sensitization rather than protection from heat shock- and Fas-
mediated apoptosis (data not shown).
We have previously shown that in HeLa cells, FasR

stimulation results in a rapid activation of ERK1/2 and
subsequent protection of the cells from apoptosis.14,15

Therefore, abrogation of ERK1/2 activity and survival signals
could sensitize the cells. Heat shock, however, did not
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Figure 2 Fas does not activate the heat shock response. Jurkat cells were heat
shocked (HS; 30min at 421C), before recovery at 371C (R) with or without Fas
treatment (200 ng/ml anti-Fas) for the indicated time periods. Cell extracts were
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Figure 1 Heat shock sensitizes cells to Fas-mediated apoptosis. (a) Differential
interference contrast pictures of Jurkat cells subjected to the indicated
treatments: control, heat shock (HS, 30min at 421C followed by a 2-h recovery
at 371C), Fas (2-h treatment with 100 ng/ml anti-Fas), HS þ Fas (30min at 421C
followed by a 2-h anti-Fas treatment at 371C). The arrows indicate the apoptotic
cells, recognizable by their blebbing. (b) Jurkat cells were heat shocked for 15 or
30min followed by a 2-h treatment with 200 ng/ml anti-Fas. Apoptotic cells were
counted by FACScan after Annexin-V staining. The graph represents mean value
(mean7S.E.) of triplicates. (c) Control or heat-shocked HeLa cells (30 min 421C
and 2-h recovery prior to Fas stimulation) were treated with FasL in the indicated
amounts. Cell death was measured by MTT assay.

Heat shock enhances Fas-mediated apoptosis
SEF Tran et al

1139

Cell Death and Differentiation



downregulate the activation of ERK1/2 by FasR in HeLa cells.
Instead, heat shock strongly induced ERK1/2 phosphoryla-
tion, an activation state that disappeared rapidly when cells

were left to recover at 371C (Figure 4d). Furthermore, no
significant ERK1/2 activity was detected in Jurkat cells after
either heat shock or FasR stimulation (data not shown). Taken
together, these results exclude the possibility of ERK1/2 being
involved in the heat shock-induced sensitization to Fas-
mediated apoptosis.
Stress-induced signaling has been previously shown to

directly affect Fas-mediated cell death. Indeed, studies in lpr
mice lymphoid cells have revealed that both g-irradiation and
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Figure 3 Inducible overexpression of Hsp70 does not affect the observed
increase in apoptosis. (a) Control Western blot showing Hsp70 induction in
Hsp70-GFP-tetON Jurkat cells after 24 h with 1mg/ml doxycycline. (b)
Micrographs of Hsp70-GFP-tetON Jurkat cells, with or without induction by
1mg/ml doxycycline and 5 h of 200 ng/ml Fas treatment. The cells were loaded
with TMRM for visualization of polarized mitochondria and the nuclei were
stained with Hoechst. Arrows indicate examples of GFP-positive cells. (c)
Apoptosis in Fas-treated Hsp70-GFP-tetON Jurkat cells with or without
doxycycline was quantified by FACScan after Annexin-V staining. The graph
represents mean value (mean7S.E.) of three different experiments.
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heat shock-induced apoptosis were partially dependent on
FasR signaling, and g-irradiation was able to upregulate FasR
expression.44 Furthermore, stress was also shown to in-
crease cell death by upregulation of FasL.45 However, heat
shock did not provoke any increase in surface expression of
FasR in Jurkat cells (Figure 5a), nor did it induce the SDS-
stable high molecular form of FasR which appears in Western
blots after FasR stimulation (Figure 5b). Furthermore,
upregulation of FasL would be unlikely to have any effect,
as we used saturating amounts of antibody, to engage all
receptors (data not shown). This suggests that heat shock
affects FasR signaling downstream of the receptor. Such
signaling can be directed toward survival rather than cell
death by activation of certain antiapoptotic mechanisms.

DISC components are affected by heat shock

As evidence for caspase-independent apoptosis is emer-
ging,46-50 we tested whether heat shock would activate a Fas-
mediated, caspase-independent pathway. In this respect, we
examined the induction of apoptosis in the absence or
presence of the pan-caspase inhibitor z-VAD-fmk. A general
caspase inhibition prevented equally well the induction of
apoptosis by both Fas and heat shock followed by Fas,
excluding the possibility that a caspase-independent pathway
would be activated by heat shock (Figure 6a). A control
Western blot of the same samples showed that caspase-8
cleavage into the intermediate p41/43 form and the p18 active
form was effectively inhibited by z-VAD-fmk. Interestingly, we
observed that heat shock by itself could induce cleavage of
caspase-8 independently from activation of apoptosis
(Figure 6b). The active form of caspase-8, which appeared
within 2 h of recovery after heat shock, was not due to
elevated levels of apoptosis in the heat shock samples, as
shown in Figure 6a. In agreement with the heat stress-induced
caspase-8 processing and sensitization to apoptosis, Fas
treatment resulted in an augmentation of caspase-8 cleavage
in heat-shocked cells compared to nonheat-shocked cells,
which was clearly visible from the increase in p18 fragment
(Figure 6b).
To assess whether the sensitization was due to general

caspase activation by heat shock, we examined the cleavage
of other caspases, namely caspase-9, which is another
initiator caspase, functioning at the level of the mitochondrial
amplification loop, and caspase-3, which is an effector
caspase and a substrate for caspase-8 and -9. Heat shock
did not promote caspase-3 or -9 cleavage (Figure 6c).
Similarly, DEVDase activity, which includes caspase-3
activity, was detected in Fas-treated samples, but not after
heat shock alone (Figure 6d). Furthermore, the specific
caspase-8 inhibitor z-IETD-fmk completely prevented the
heat shock-induced cleavage of caspase-8, indicating that
autocatalytic processing was responsible for caspase-8
cleavage (Figure 7a). z-IETD-fmk also inhibited cleavage of
caspase-3 and apoptosis induced by Fas with or without heat
shock (Figure 7a,b). Taken together, our data suggest that a
mild heat shock does not directly affect apoptosis, but is able
to activate caspase-8, which is likely to sensitize the cells to
the subsequent Fas-mediated apoptotic stimulus.
To further investigate the mechanism of heat shock-

mediated caspase-8 cleavage, we examined the involvement
of the DISC protein FLIP in this process, as FLIP has been
characterized as an endogenous caspase-8 inhibitor.11 It is
expressed in two isoforms, FLIP long (FLIPL) and FLIP short
(FLIPS), both of which can inhibit isoform-specific steps of
caspase-8 activation.51 As a consequence, elevated levels of
FLIP protein in the cell often reduce the susceptibility of cells
to undergo DR-mediated apoptosis.13,52 We observed that a
30-min heat shock was sufficient to decrease the levels of
both FLIPL and FLIPS in Jurkat cells (Figure 8a). FasR
stimulation induced cleavage of only a fraction of total FLIPL,
whereas following heat shock-mediated downregulation of
FLIP, FasR activation induced cleavage of the remaining
FLIPL protein (Figure 8a). Although the FLIP proteins did not
disappear completely, our results strongly suggest that the
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amount of FLIP has been reduced under a certain critical
threshold, which could explain the sensitization by lack of
protection. z-VAD-fmk or z-DEVD-fmk (inhibitor of caspase-3,
-6, -7, -8, and -10) inhibited the caspase-8-mediated cleavage
of FLIP, as expected, but not its downregulation (Figure 8a
and data not shown), showing that the suppression of FLIP
occurs in a caspase-independentmanner. Other antiapoptotic
proteins such as the mitochondrial proteins Bcl-XL and Bcl-2
(reviewed in Gross et al.53) were not affected by heat shock,
demonstrating the specificity of FLIP downregulation
(Figure 8b).

Discussion

Heat shock-induced apoptotic signaling

The response of cells to hyperthermia is dependent upon the
extent of temperature elevation and the duration of exposure.
Moderate exposures to elevated temperature will induce
synthesis of Hsps, which can be cytoprotective to cells that
are subsequently exposed to more extreme temperature
shifts, a phenomenon known as induced thermotolerance.
When a cell’s ability to repair heat-induced cellular damage is
overwhelmed, an apoptotic signaling pathway is initiated, with

the purpose of eliminating the damaged cell. It has been
shown that induction of Hsps, especially Hsp70, prior to
application of a severe stress can prevent the activation of this
death pathway.26,54 Furthermore, Hsp70 was shown to inhibit
cell death induced by other apoptotic stimuli, for example by
preventing cytochrome c release from mitochondria.33 There-
fore, it was surprising to observe that heat shock, with
subsequent Hsp70 induction, did not have any protective
effect against Fas-mediated apoptosis. In contrast to its
protective role, constitutive overexpression of Hsp70 was
previously suggested to increase the sensitivity to Fas-
induced cell death in Jurkat cells.38 However, in our Jurkat-
based cell system, where expression of Hsp70 is inducible as
it is in stress, Hsp70 induction did not affect Fas-mediated
apoptosis, strongly suggesting that in Jurkat cells, Hsp70
neither protects from nor increases Fas-induced apoptosis.
This is in accordance with the report that Hsp70, although able
to inhibit the apoptosome, does not prevent Fas-mediated
apoptosis.32

JNK has been implicated as a major factor in the stress-
induced apoptotic signaling pathway (reviewed in Davis40 and
Tibbles and Woodgett55). Indeed, cells deficient in both JNK1
and JNK2 were resistant to UV or other stresses.42 However,
our data contradict the hypothesis that JNK would augment
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Fas-mediated apoptosis following heat shock, as the sensi-
tization was not inhibited by downregulation of JNK activity. In
addition, our results also exclude the other MAPKs as
possible factors involved in the sensitization. These data
strongly suggest that the observed sensitization by heat shock
to Fas-induced apoptosis is not a combination of stress-
specific apoptotic signaling with that of the death receptor, but
is a direct effect of the heat stress on one or more components
of the Fas-induced apoptotic cascade.

Direct effect of heat shock on FasR-mediated
signaling

Although there is evidence that certain stresses can directly
sensitize cells to FasR-mediated apoptosis by upregulating
either FasR or FasL,44,45 heat shock does not seem to affect
the death pathway at that level. Indeed, the sensitization still
occurs when induction of apoptosis reaches a plateau after
increasing concentration of FasL, clearly showing the satura-
tion of FasR by its ligand (Figure 1c). Furthermore, we could
not detect changes in surface expression or aggregation of
FasR during heat shock, suggesting that heat stress affects
FasR signaling downstream of the receptor.
FLIP proteins have been shown to protect cells from FasR-

mediated apoptosis in many different models, and it has been
reported that induced downregulation of FLIP could sensitize
cells to apoptotic stimuli.11,13 Although this remains true for
FLIPS, the function of FLIPL is more controversial. In fact,
FLIPL has been found in some cases to sensitize cells to
apoptosis.56,57 It was recently suggested that the endogenous
levels of FLIPL would activate caspase-8 and increase FasR-
mediated apoptosis, while FLIPL-mediated protection would
occur only at higher levels of expression, which would explain
the discrepancies in previous reports.58 However, another
model was subsequently proposed, in which FLIPL interaction
with procaspase-8 triggers activation but restricts the cas-
pase-8 activity to the DISC and promotes nonapoptotic
signaling.59 Our results indicate that the heat shock-mediated
increase in Fas-induced apoptosis is likely to be due to the
downregulation of at least one of the FLIP proteins. In the light
of the above-described reports, there is the distinct possibility
that downregulation of FLIPS, rather than FLIPL, would be the
cause of the observed sensitization, since FLIPS is more
strongly affected by the heat stress. However, we cannot
exclude that downregulation of FLIPL also contributes to the
increased Fas-mediated apoptosis by restoring release of
active caspase-8. In any case, activation of FasR led to an
incomplete FLIP cleavage, suggesting that FLIP would be
present in excess compared to the cleaving activity. Thus,
although the precise mechanism remains to be discovered,
we can speculate that heat shock-promoted downregulation
of FLIP proteins would prevent the inhibition of both caspase-
8 cleavage and its cytosolic release and, as a consequence,
would enhance the apoptotic activity of Fas. General inhibition
of caspases prevented caspase-8 cleavage but not FLIP
downregulation, demonstrating that caspase-8 activation is
indeed a downstream event of FLIP downregulation. As the
levels of FLIP decreased rapidly after heat shock, it is likely
due to active degradation, rather than inhibition of protein
synthesis.
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As caspases are the main executioners of apoptosis, any
sensitizing stimulus will affect the degree of activation of one or
more caspases. However, the observation that caspase-8 is
cleaved in the absence of apoptosis in heat-shocked samples
indicates that caspase-8 cleavage can be the cause of the
sensitization, rather than its consequence. This hypothesis is
supported by the fact that heat shock specifically activates
caspase-8 rather than caspase-3 or -9. Furthermore, caspase-
8 inhibition prevented both its own cleavage in heat-shocked or
Fas-treated cells, and cleavage of the effector caspase-3 in
Fas-stimulated heat-shocked cells, indicating that caspase-8
activation is essential for induction of apoptosis by heat shock
and Fas, and that other caspases are not necessary for its
processing during heat shock. Thus, we can conclude that
caspase-8 is the initial caspase in heat stress-mediated
sensitization of cells to FasR-induced apoptosis.

Fever and the immune system

During an infection, the body’s overall response involves
elevation of its temperature. Although the role of fever has not
been completely characterized, it is believed to have
beneficial effects, for example by affecting viability of the
pathogens. Hasday and Singh60 have proposed several ways
in which fever and the heat shock response interact, involving
protection of the host cells, increased immunogenicity of the
pathogen through Hsp production, and stimulation or inhibi-
tion of components of the immune response.60 In accordance
with the latter aspect, we can speculate that the heat shock
response elicited during fever would enhance FasR-mediated
destruction of infected cells by cytotoxic T lymphocytes.
Furthermore, downregulation of the immune response is also
dependent on FasR-induced cell death. Since we have shown
that heat shock can sensitize a T cell model to FasR killing, we
can speculate that fever could also be involved in regulating
the destruction of T cells by activation-induced apoptosis.
It has long been known that significant numbers of

spontaneous remission in cancer patients coincide with
feverish infection.61 Furthermore, hyperthermia has been
shown to improve treatments in combination with radio- or
chemotherapy in clinical trials (reviewed in Hildebrandt
et al.62). As the mechanism for the regression of the tumors
is not known, we can hypothesize that heat-induced down-
regulation of FLIP could facilitate elimination of cancer cells.
Indeed, constitutive FLIP expression has been implicated in
tumor progression through escape from DR-induced cell
death.63,64 Recently, high-level expression of FLIP was
detected in Fas-resistant Hodgkin’s disease malignant cells,
the expression of which was not affected by cycloheximide
treatment.65 In the light of these new data, it would be highly
interesting to investigate how heat shock downregulates
FLIP, and if this could assist in abrogating the enhanced
resistance from DR-induced apoptosis seen in tumor cells.

Materials and Methods

Cell lines and plasmids

HeLa and Jurkat cells were obtained from ATCC, and cultured in Dulbecco
modified Eagle’s medium and RPMI (Sigma-Aldrich, St. Louis, MO, USA),

respectively, supplemented with 10% inactivated fetal calf serum, 2 mM
L-glutamine, 100 U/ml penicillin, and 100mg/ml streptomycin, in a
humidified incubator with 5% CO2 in air at 371C. A Jurkat cell line
expressing the reverse tetracycline-controlled transactivator (rtTA) was
generated by electroporation-mediated transfection with the plasmid
pUHD17201neo.66 A Jurkat-rtTA clone was then transfected with the
tetracycline-regulated dicistronic Hsp70/GFP expression plasmid pTR5-
DC/Hsp70-GFP*tk/hygro.33 Stably transfected clones were selected and
screened as described previously.33,67 GFP-tagged kinase-dead mouse
MKK4a was prepared by releasing the kinase-dead fragment from plasmid
pEBG-SEK1(K129R)68 (a kind gift from John Kyriakis, Diabetes Research
Laboratory, Massachusetts General Hospital, Charlestown, MA, USA)
with BamHI, and ligating it in-frame with the C-terminus of GFP into EGFP-
C1 cut with BglII and BamHI and treated with Shrimp Alkaline
Phosphatase (USB, Amersham Pharmacia). To validate dominant
negative action, COS7 cells were transfected with JNK plasmid alone or
in combination with GFP-MKK4KD, and dominant negative activity was
observed as prevention of cotransfected JNK activation by a 40-min
treatment with 10mg/ml anisomycin. Jurkat cells were transfected with
DN-MKK4 by electroporation 48 h before performing the experiment.

Reagents and treatments

Treatments were carried out for the time periods described in the figure
legends, with an agonistic anti-human FasR immunoglobulin M antibody
(100 or 200 ng/ml, MBL, Watertown, MA, USA), recombinant FasL (a kind
gift from Jürg Tschopp, Institute of Biochemistry, University of Lausanne,
Switzerland), 20mM z-VAD-fmk, 50 mM z-IETD-fmk, or 50mM z-DEVD-
fmk (Sigma-Aldrich). Fas-induced apoptosis was measured in samples
treated with a range of concentrations (1–100mM) of caspase inhibitors to
determine the concentration needed to inhibit all apoptosis. In all
experiments, cells were incubated with caspase inhibitors 1 h prior to other
treatments. For heat shock, culture dishes were sealed with parafilm and
immersed in a water bath at 421C for 30 min if not otherwise mentioned.
Controls were left in the incubator at 371C. Tests were made with sealed
and unsealed controls to ensure that there was no difference. After heat
shock, cells were either harvested or returned to the incubator for recovery
and treatments.

Immunoblotting

For Western blot, cells were lysed in RIPA buffer (PBS pH 7.4, 1% Nonidet
P-40, 0.5% sodium deoxycholate, 1 mM Na3VO4, 0.1% SDS, 1mM EDTA,
1mM EGTA, 20 mM NaF, 1 mM PMSF, DTT, complete protease inhibitor
cocktail (Roche, Basel, Switzerland). A total of 20–50 mg of proteins was
subjected to SDS-PAGE and transferred to Protran nitrocellulose
membrane (Schleicher and Schuell, Dassel, Germany), blocked in PBST
(PBS, 0.1% Tween-20) with 5% nonfat milk, and incubated overnight with
anti-caspase-8, anti-FLIP (C15 (Scaffidi et al.69) and NF6 (Scaffidi et al.13),
respectively, were obtained from Peter Krammer, (German Cancer
Research Center, Heidelberg, Germany), anti-phospho-p44/42-MAPK
(New England Biolabs, Boston, MA, USA), anti-Hsp70 (4g4, Affinity
Bioreagents, Golden, CO, USA) antibodies. After washes in PBST, the
membranes were incubated for 1 h with the appropriate horseradish
peroxidase-coupled secondary antibody (PIERCE, Amersham). Detection
was performed by enhanced chemiluminescence reaction (ECL,
Amersham). For loading controls, membranes were stripped in PBS with
1% NP-40, and probed as described with anti-ERK2 (Santa Cruz
Biotechnology, Santa Cruz, CA, USA) or anti-Hsc70 (StressGen, Victoria,
Canada) antibodies.
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Electrophoretic mobility shift assay

Cells were washed in cold PBS, lysed by freeze–thaw in buffer C (25%
glycerol, 0.42 M NaCl, 1.5 mM MgCl2, 0.2 mM EDTA, 20 mM HEPES)
containing PMSF and DTT (0.5 mM each), and supernatant was
recovered by centrifugation at 41C. Whole-cell extract (15 mg proteins)
was incubated with a 32P-labeled oligonucleotide probe corresponding to
the consensus heat shock element.70 The protein–DNA complexes were
then resolved on 4% polyacrylamide native gel electrophoresis.

Kinase assay

ERK2 and JNK were immunoprecipitated from 400 ml RIPA lysates
(6� 106 cells/sample) by incubation with anti-ERK2 and anti-JNK
antibody coupled to protein-A-Sepharose. Immunoprecipitates were
washed three times in RIPA buffer. ERK2 immunoprecipitates were then
washed three times in ERK assay buffer (10 mM Tris pH 7.4, 150mM
NaCl, 10 mM MgCl2, 0.5 mM DTT). JNK immunoprecipitates were
additionally washed three times with LiCl buffer (500mM LiCl, 100 mM
Tris pH 7.6, 0.1% Triton X-100, 1mM DTT) and three times with JNK
assay buffer (20 mM MOPS pH 7.2, 2 mM EGTA, 10mM MgCl2, 0.1%
Triton X-100, 1 mM DTT). The kinase reactions were carried out in 120 ml
kinase assay buffer containing 25mM ATP, 2.5 mCi 32Pg ATP and 1mg/ml
myelin basic protein or GST-c-Jun, respectively, as substrates, for 15min
at 371C. Reactions were stopped by addition of 3� Laemmli sample
buffer and the samples were resolved by SDS-PAGE, analyzed on a
phosphoimager (BioRad), and autoradiographed.

Quantification of apoptosis

Apoptotic Jurkat cells were detected by Annexin-V staining. Untransfected
Jurkat cells were incubated with Annexin-V-FITC, and GFP-expressing
cells were incubated with Annexin-V-PE, in medium and Annexin binding
buffer for 15min on ice. Samples were run on FACScan flow cytometer
(Becton Dickinson, Lincoln Park, NJ, USA). HeLa cell death was quantified
by the MTT viability assay. After treatment of HeLa cells on 96-well plates,
the medium was replaced with fresh medium containing 1mM MTT
(Sigma-Aldrich) and incubated for 2–4 h at 371C before washing and
solubilizing the formazan with 50ml DMSO. Results were measured at
540 nm on a plate reader.
Caspase-3 assay was performed on RIPA cell extract without protease

inhibitor, using the homogeneous time-resolved fluorescence quenching
assay LANCE kit for caspase-3 (Perkin-Elmer Life Science, Turku,
Finland), as described by the manufacturer. Results were measured on
VICTOR (Perkin-Elmer Life Science).

Microscopy

Transfected cells were fixed with 3% paraformaldehyde in PBS for 30 min,
printed on coverslips using a cytospin, and DNA-stained with Hoechst
33342 (Molecular Probes, Eugene, OR, USA). After 3 washes, cells were
mounted in Mowiol (Sigma-Aldrich) and visualized with a fluorescence
microscope (Leica, Wetzlar, Germany). Tet-ON cell lines were treated with
1mg/ml doxycycline (Sigma-Aldrich), resulting in a broad range of GFP
induction, as detected by fluorescence microcopy. Hsp70 expression,
assessed by cell staining with anti-Hsp70 antibody, correlated well with
GFP-fluorescence intensity. To visualize cells retaining mitochondrial
membrane potential, tetramethyl rhodamine ester (TMRM, 200 nM,
Molecular Probes) was added to the medium, together with Hoechst
33342 (Molecular Probes). Pictures were taken by confocal microscopy

(Leica TCS40) on the live cells at different time points after treatment with
200 ng/ml anti-Fas.
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