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Abstract

Activation-induced cell death (AICD), a process mediated by
CD95 and CD95 ligand (CD95L), plays a critical role in
regulating homeostasis of the inmune system. Although the
role of sphingolipids such as ceramides has been suggested
to participate in CD95-mediated apoptosis, the exact role of
these molecules in this process remains controversial. We
employed myriocin, a specific inhibitor of serine palmitoyl-
CoA transferase that mediates the first commitment step in
sphingolipid synthesis. We found that myriocin could
effectively block AICD in T-cell hybridomas and T-cell blasts.
However, fumonisin B1, an inhibitor of the final step of
ceramide synthesis, or inhibitors of sphingomyelinases did
not prevent AICD. Furthermore, ceramide analogues, such as
C2 and C6, could not reverse the inhibitory effect of myriocin.
Interestingly, sphinganine, an intermediate of ceramide synth-
esis, completely reversed the inhibitory effect of myriocin,
indicating a critical role of sphinganine. Myriocin did not
modulate the expression of CD95 or CD95L, instead, it interfered
with the early steps of CD95-mediated caspase activation.
Therefore, we have uncovered a novel mechanism by which
sphingolipid intermediates regulate CD95-mediated apoptosis.
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Introduction

One of the best-characterized systems in which apoptosis can
be demonstrated is activation-induced cell death (AICD) in T
cells.m2 AICD is a fundamental mechanism for the removal of
excess peripheral lymphocytes after mounting an immune
response.®>~ Defects in this programmed removal mechan-
ism could, therefore, lead to the accumulation of potentially
autoreactive lymphocytes. Lymphoproliferation (jpr) and
generalized lymphoproliferative disease (gld) are sponta-
neous mutations in mice that are loss of function mutations of
Fas/CD95 and FasL/CD95L, respectively.® Mice with /pr and
gld mutations produce large amounts of autoantibodies and
develop an autoimmune disease that resembles human
systemic lupus erythematosus.® Autoimmune lymphoproli-
ferative syndrome (ALPS) pathogenesis in humans has been
attributed to defective lymphocyte apoptosis caused by
mutations of either the CD95 or CD95L gene.

Studies in the last few years have revealed that CD95 and
CD95L play a critical role in AICD. It has been demonstrated
that blocking the interaction between CD95 and CD95L could
inhibit AICD."™ The unique ‘death domain’ motif in the
cytoplasmic region of the CD95 receptor is essential for the
initiation of receptor-mediated caspase activation cascade.
The binding of CD95L to CD95 induces trimerization, which
brings together the intracellular death domains, leading to the
recruitment of Fas-associated death domain (FADD).” The
death effector domain in FADD further recruits procaspase 8
(FLICE) to form the death-inducing signaling complex
(DISC)."" Upon joining the complex, procaspase 8 is cleaved
and becomes activated. Activated caspase 8 initiates the
activation of a caspase cascade that includes caspase 3
(CPP32). Caspases can also be activated in response to
cellular stress, which often targets mitochondria. Such stimuli
result in the release of proapoptotic molecules including
apoptosis-inducing factor (AIF) and cytochrome c. Once
released into the cytosol, cytochrome c interacts with Apaf-1,
dATP/ATP and procaspase 9 to form a complex called the
‘apoptosome’ that can activate procaspase 9.'' Caspase-9
can signal downstream and activate procaspase 3 and
procaspase 7. In any case, both pathways lead to the
activation of caspase 3. Caspase 3 has been considered as
an effector caspase, which then cleaves the inhibitor of
caspase-activated deoxyribonuclease (ICAD) to release
CAD."2 Once CAD is released, it degrades genomic DNA at
the internucleosomal regions and ultimately leads to irrever-
sible apoptosis.

Although the blueprints of the pathways by which CD95
induces apoptosis have been established, the details of the
molecular mechanisms are yet to be revealed. One example
is the role of sphingolipids in CD95-mediated apoptosis.
These lipids are a large class of membrane lipids that have
attracted much attention in the recent years because of their
diverse roles in biological processes such as cell survival,
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Figure 1 Diagrammatic representation of the pathways of sphingolipid
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differentiation and cell death. Sphingolipids are derivatives of
the C18 amino alcohols sphingosine and sphinganine.
Ceramide is the fundamental structural unit common to all
sphingolipids and is one of the most studied members of the
sphingolipid family. The attachment of different structures to
ceramide via -OH on C-1 of sphingosine forms various types
of sphingolipids. The first step in de novo synthesis of
ceramide begins with the condensation of palmitoyl CoA with
serine to form 3-ketosphinganine, which is catalyzed by serine
palmitoyl transferase. 3-Ketosphinganine is subsequently
reduced to form sphinganine, then acylated by ceramide
synthase to yield dihydroceramide. Finally, dihydroceramide
is oxidized to yield ceramide, where a trans-4,5 double bond is
introduced by the enzyme dihydroceramide reductase.'®
Ceramide may also be produced via the action of several
distinct enzymes involved in the cleavage of sphingomyelin
(ceramide linked to phosphocholine) by acidic (a) or neutral
(n) sphingomyelienases (SMases) (a diagrammatic repre-
sentation of sphingolipid metabolism is shown in Figure 1).
There exist two forms of nSMase: one is cytosolic, Mg®*-
independent and the other is membrane-bound, Mg?*-
dependent.’*'® Depending on the cell lines and experimental
procedures employed, ceramide has been shown to mediate
apoptosis, '® cell cycle arrest,'” induction of the JNK and ERK
pathway,'® increased cell survival,'® cell proliferation®® and
activation of NFxB.?'

Several studies have indicated a role for ceramide in
various types of apoptosis through the activation of aSMase,
leading to the modulation of BAD/BAX, Apaf1, cytochrome ¢
and the activation of the SAPK/JNK pathway.'>%? On the
other hand, SMases can also be activated by positive signals
elicited by PDGF, CD28 and oxidized LDL resulting in the
transcription of growth-related genes through the activation of
the MAPK pathway and upregulation of a plethora of essential cell-
ular functions like cell growth, differentiation and repair.2®-2°
In the negative signaling pathway, ceramide behaves as a
second messenger in the initiation of apoptotic cell death in a
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variety of pathophysiologic settings.26 Application of exogen-
ous ceramide alone, using cell-permeable ceramide analo-
gues such as C,, Cg and Cg isoforms, is sufficient to initiate
apoptosis in some cells.?” In contrast, the use of fumonisin B1,
a specific ceramide synthase inhibitor (Figure 1), provides
marked protection against chemical hypoxia-induced DNA
strand breaks, DNA fragmentation and cell death.?® Recent
investigations have shown that in some experimental sys-
tems, CD95 signals via ceramide-rich membrane rafts,
suggesting that ceramide might participate in the clustering
of CD95.2%%°

Although many studies have shown the role of ceramide in
apoptosis, most of these studies were performed in cell-free
systems with analogues of ceramide. In addition, the effect of
ceramide has been shown to vary from system to system, with
results ranging from regulating apoptosis to promoting
mitogenic responses. We have evaluated the importance of
ceramide and other sphingolipid intermediates in activation-
induced apoptosis, and demonstrated that de novo synthesis
of the sphingolipid intermediate, sphinganine, but not cer-
amide, is important for TCR-signaled cell death following
activation. The effect of these intermediates seems to be
exerted through modulating the early steps of CD95-mediated
caspase activation. This is the first time that sphingolipid
intermediates are being shown to be important in the CD95
signaling process.

Results

Myriocin inhibits activation-induced apoptosis

Myriocin (ISP-1, thermozymocidin) is a newly identified
immunosuppressant®' with a structure homologous to sphin-
gosine. A natural product of [saria sinclairii, myriocin
specifically inhibits serine palmitoyl transferase,3 the first
enzyme in the de novo synthesis of ceramide (Figure 1).
Miyake et al.>2 found that myriocin suppressed proliferation of
an IL-2-dependent mouse cytotoxic T-cell line, CTLL-2, in a
dose-dependent manner. Suppression of CTLL-2 proliferation
with myriocin was found to be a result of the inhibition of serine
palmitoyl transferase (Figure 1). The serine palmitoyl trans-
ferase enzyme consists of two subunits, LCB1/SPTLC1 and
LCB2/SPTLC2.2® Myriocin inhibits serine palmitoyl transfer-
ase activity by binding directly to LCB1 and LCB2.3*
Deoxomyriocin is a synthesized analog of myriocin found to
be 5 to 10-fold more potent than myriocin (data not shown).
Since sphingolipids such as ceramide have been implied to
play a critical role in the pathway leading to apoptosis, we first
examined the effect of myriocin on AICD. T-cell hybridoma
A1.1 cells were activated with anti-CD3 immobilized on
tissue culture plastic plates overnight in the presence or
absence of myriocin. We found that myriocin inhibited AICD
in a concentration-dependent manner, with 50% inhibition
at 3.125 uM and complete inhibition at 6.25 M. As shown in
Figure 2a, A1.1 cells activated with anti-CD3 show mem-
brane blebbing, characteristic of cells undergoing apoptosis.
On the other hand, A1.1 cells activated with anti-CD3 that
were also treated with 6.25 M myriocin appeared round
and healthy, illustrating that myriocin is effective in inhibiting
AICD. At this concentration, myriocin did not have any
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Figure 2 Myriocin inhibits AICD. (a) A1.1 cells were activated with plastic-bound anti-CD3 alone with or without 6.25 M myriocin. Photographs were taken 14 h after
activation. (b) and (c) A1.1 cells were activated with anti-CD3 in the presence and absence of 6.25 uM deoxomyriocin or fumonisin B1 for 14 h. Apoptosis was

determined by DNA content analysis. The marked region represents percent of apo

ptotic cells in the subdiploid peak
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effect on cell proliferation in unactivated cells (data not
shown). We also looked at whether deoxomyriocin could
inhibit AICD. Anti-CD3 treatment induced apoptosis in A1.1
cells as demonstrated by the presence of a hypodiploid peak
in DNA content analysis (Figure 2b). Anti-CD3-treated A1.1
cells also treated with deoxomyriocin did not have a
hypodiploid peak, indicating that deoxomyriocin can also
inhibit apoptosis in A1.1 cells.

To reveal whether de novo synthesis of ceramide plays a
role in the protection of cells from activation-induced
apoptosis, we examined the effect of the ceramide synthase
inhibitor, Fumonisin B1 (FB1),%® which inhibits the final step in
ceramide synthesis. FB1 is the most common mycotoxin
produced by Fusarium moniliforme. The structure of FB1
resembles sphingosine and studies indicate that FB1 inhibits
sphingolipid biosynthesis by inhibiting ceramide synthase
activity. FB1 interacts with the binding sites for sphinganine
and fatty acyl-coenzyme A (CoA)*® in a competitive manner,
causing sphinganine to accumulate. Wang et al.®® showed
that the I1Cso of FB1 was approximately 0.1 uM for inhibiting
the incorporation of serine into sphingosine. Anti-CD3 treat-
ment induced apoptosis in A1.1 cells as demonstrated by the
hypodiploid peak in DNA content analysis (Figure 2c).
Activated A1.1 cells treated with FB1 also had a hypodiploid
peak. Therefore, blockade of ceramide synthesis using FB1
does not prevent AICD. We also found that ceramide
analogues C2 and C6 could not induce apoptosis in A1.1
cells, nor could these ceramide analogues reverse the
inhibitory effect of myriocin upon anti-CD3 activation (data
not shown). These results reveal that although sphingolipid
synthesis is required as indicated by the capability of myriocin
to inhibit AICD, de novo synthesis of ceramide is not
necessary for activation-induced apoptosis.

To test the effect of myriocin on activation-induced
apoptosis in other cells, we employed another T-cell
hybridoma IE5. As in A1.1 cells, AICD in IE5 cells is also
dependent on Fas and FasL interaction (data not shown). As
shown in Figure 3a, anti-CD3-induced AICD in these cells is
blocked by myriocin. In addition, we also generated T-cell
blasts from freshly isolated splenocytes and tested for AICD
according to the established protocol.®* We found that AICD
in T-cell blasts was also inhibited by myriocin (Figure 3b).
Furthermore, we have found that apoptosis in A1.1 cells
induced by dexamethasone and cisplatin is not affected by
myriocin (data not shown), indicating the specificity of
myriocin.

Sphinganine reverses the effect of myriocin

The synthesis of sphingolipids is a multistep process.
Sphinganine is an intermediate upstream of ceramide
synthase, an enzyme sensitive to FB1. If this intermediate
participates in Fas-mediated apoptosis, it should be able to
reverse the inhibitory effect of myriocin. To test this hypoth-
esis, we activated A1.1 cells with anti-CD3 in the presence of
both myriocin and sphinganine, and assessed apoptosis by
DNA content analysis. As shown above, myriocin can inhibit
AICD, as seen by the absence of the subdiploid peak.
Interestingly, when cells were treated with both myriocin and
sphinganine, a subdiploid peak reappeared (Figure 4),
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Figure 3 Myriocin inhibits AICD in other cells. T-cell hybridoma IE5 cells (a)
and T cell blasts (b) were activated with plastic-bound anti-CD3 for 12h in the
presence or absence of 6.25 uM myriocin. Photographs represent cellular
morphology, and percentage on the top left corners shows the ratio of apoptotic
cells as determined by DNA content analysis

indicating that cells underwent apoptosis. This suggests that
sphinganine is an important intermediate of the sphingolipid
synthesis pathway participating in Fas-mediated apoptosis.

Myriocin does not inhibit IL-2 production

Activation of A1.1 T-cell hybridoma through the T-cell receptor
by antigen plus MHC or with anti-CD3 leads to apoptosis.3”
Activation of T-cell hybridomas also leads to the production of
cytokines such as IL-2.%% In order to determine whether
myriocin inhibits AICD by interfering with TCR signaling, we
examined if myriocin had an effect on IL-2 production. A1.1
cells were treated with myriocin, C2 or C6 ceramides in the
presence or absence of anti-CD3 for 14 h. Culture super-
natants were examined for IL-2 production by ELISA. As
shown in Figure 5, unactivated A1.1 cells do not produce
detectable amounts of IL-2, while anti-CD3 activation leads to
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Figure 4 Sphinganine reverses the effect of myriocin. A1.1 cells were activated with anti-CD3 in the presence and absence of 6.25 uM deoxomyriocin and 3.13 uM
sphinganine for 14 h. Apoptosis was determined by DNA content analysis. The marked region represents percent of apoptotic cells in the subdiploid peak
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Figure 5 Myriocin does not inhibit activation-induced IL-2 production. A1.1
cells were treated with 6.25 M myriocin, FB1, sphinganine, C2 or C6 ceramide
in the presence or absence of anti-CD3 for 14 h. Culture supernatants were
examined for IL-2 production by ELISA

a significant increase in IL-2 production. Cells treated with
anti-CD3 as well as myriocin also produced significant
amounts of IL-2, illustrating that TCR signaling is not
compromised and that myriocin inhibits apoptosis down-
stream of TCR signaling. Similarly, FB1, C2, C6 and sphinga-
nine also did not affect IL-2 production. Therefore, sphingolipids
are not involved in general TCR activation process.

Myriocin does not affect CD95 or CD95L
expression

Crosslinking the TCR of T-cell hybridomas leads to AICD.
AICD in T-cell hybridomas have been shown to require the
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expression of CD95 and CD95L.%° We tested whether the
inhibitory effect of myriocin on AICD is because of its effect on
activation-induced CD95 and CD95L expression. A1.1 cells
express low basal levels of CD95 that increase within 2—4 h
upon activation with anti-CD3. On the other hand, A1.1 cells
do not express CD95L unless they are activated with anti-
CD3.%° CD95L expression can be seen in A1.1 cells at 4-6h
after activation with anti-CD3.*' We found that neither
myriocin nor FB1 affects CD95 or CD95L expression upon
activation with ani-CD3 (Figure 6). Therefore, the effect of
sphingolipids is not exerted by interfering with activation-
induced CD95 and CD95L expression.
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Myriocin directly inhibits CD95 signaling

Since myriocin does not affect CD95 and CD95L expression,
its effect is likely through the death signal after Fas
stimulation. Therefore, we tested the effect of myriocin on
CD95-mediated cell death signaling. DNA content analysis of
A1.1 cells shows that few cells are in the subdiploid peak
(Figure 7a). Treatment with anti-CD3 dramatically increased
the number of cells in the subdiploid peak. As demonstrated
previously,? cells treated with both anti-CD3 and CsA are
inhibited from undergoing apoptosis, illustrated by the
diminished subdiploid peak. CsA inhibits FasL expression,
thereby inhibiting apoptosis.*? However, cells rescued by CsA
are still sensitive to Fas ligation with JO2. JO2 is an anti-
mouse Fas monoclonal antibody with activation capacity.
Interestingly, cells rescued with CsA and further treated
with JO2 are still inhibited from undergoing apoptosis by
myriocin, indicating that the effect of myriocin is downstream
of the Fas death signal. In order to further support that
myriocin affects CD95-mediated death pathway, we utilized
A20 B cells. A20 is a murine B-cell line that expresses CD95
and s very sensitive to CD95 ligation-induced apoptosis. Cells

were incubated with JO2 in the presence or absence of
myriocin. We found that JO2-induced apoptosis also was
inhibited by myriocin in A20 B cells (Figure 7b). Since
myriocin does not modulate the transcriptional regula-
tion of CD95 or CD95L, this result suggests that the inhibitory
effect of myriocin is specifically involved in the CD95-death
pathway.

Myriocin inhibits caspases 3, 8 and 9 activation

CD95 is a cell surface death receptor that belongs to the tumor
necrosis factor receptor superfamily. Upon binding of CD95 to
CD95L, CD95 trimerizes and brings together three intracel-
lular death domains that bind to the death domain of FADD.
FADD also contains a death effector domain (DED) that
recruits the DED of procaspase 8 to form the death-inducing
signaling complex (DISC). When procaspase 8 is bound to the
DISC, it is cleaved in order to yield active caspase 8, thereby
initiating the caspase cascade.*® Since myriocin did not affect
CD95 or CD95L expression, we examined whether it affects
the death signaling pathway. Figure 8 illustrates that A1.1
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Figure 7 Myriocin directly inhibits CD95 signaling. (a) A1.1 cells were treated with anti-CD3, 200 ng/ml cyclosporin A, 200 ng/ml JO2 in the presence or absence of
6 1M myriocin for 12 h. Apoptosis was determined by DNA content analysis. The marked region represents percent of apoptotic cells in the subdiploid peak. (b) A20 cells
were treated with 10 ng/ml JO2 in the presence or absence of 6 uM myriocin for 12 h. Apoptosis was determined by DNA content analysis
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Figure 8 Myriocin inhibits caspases -3, -8 and -9 activation. A1.1 cells were
activated with anti-CD3 and treated with 12.5 uM myriocin for 5h. Cells were
harvested, lysed and analyzed for caspase activity using Apoalert Caspase-3 (a),
caspase-8 (b) and caspase-9 (c) fluorescent assay kit. Fluorescence was
determined at 400 nm excitation and 505 nm emission

cells treated with anti-CD3 have high levels of caspases 3
(Figure 8a), 8 (Figure 8b) and 9 (Figure 8c) activity. The
activation of these caspases was inhibited by myriocin.
Since both caspases 8 and 9, two initiators of the
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caspase cascade, were inhibited, it is likely that the effect of
myriocin is exerted through modulating the DISC formation
process.

Discussion

Sphingolipids are key components of the lipid bilayer that can
also serve as vital second messengers in cell survival,
proliferation, cell—-cell communication, cytokine production
and apoptosis.*4™® The role of sphingolipids in T lymphocytes
following TCR activation is beginning to be identified. For
example, a recent study has revealed that membrane rafts
play a critical role in concentrating MHC class || molecules into
microdomains that allow efficient antigen presentation at low
ligand densities.*” The importance of modular interaction
during transmembrane signaling is rapidly being realized.
These membrane microdomains or rafts serve as privileged
sites where receptors and proximal signaling molecules
optimally interact.*® However, the role of membrane rafts in
AICD is currently not known. In this study, we addressed the
possible involvement of sphingolipids in the regulation of
AICD. We utilized two enzyme inhibitors and determined
whether it is ceramide or another sphingolipid intermediate
that is important for AICD in A1.1 T cells. A1.1 cells were
analyzed following activation with anti-CD3 and treatments
with sphingolipid intermediates or sphingolipid synthesis
inhibitors, and found an important role of the sphingolipid
synthesis intermediates in the modulation of the CD95 death
pathway. Our results indicate that the effect of the sphingolipid
intermediates is associated with the early steps of CD95-
mediated caspase activation, likely by participating in DISC
formation.

Sphingolipid synthesis starts with the condensation of
palmitoyl CoA with serine to form 3-ketosphinganine, a
process catalyzed by serine palmitoyl transferase. 3-Keto-
sphinganine is subsequently reduced to form sphinganine,
then acylated by ceramide synthase to yield dihydroceramide,
which is further oxidized to yield ceramide, where a trans-4,5
double bond is introduced by the enzyme dihydroceramide
reductase.'® In this study, we employed a serine palmitoyl-
CoA transferase inhibitor, myriocin, to block sphingolipid
synthesis. This inhibitor has been shown to be highly effective
and specific in inhibiting the activity of serine-palmitoyl
transferase by binding to the enzyme.®23* As previously
mentioned, serine-palmitoyl transferase consists of two
subunits: LCB1 and LCB2. Myriocin specifically inhibits
serine-palmitoyl transferase activity by binding to LCB1 and
LCB2.3* We have discovered that inhibition of serine-
palmitoyl transferase with myriocin, but not of ceramide
synthase with FB1, could abrogate CD95-mediated apopto-
sis. Since myriocin was able to inhibit apoptosis and FB1 was
not, itis conceivable that a sphingolipid intermediate upstream
of ceramide synthase and downstream of serine-palmitoyl
transferase, rather than ceramide itself, is critical for CD95-
induced activation of the caspase cascade. Consistent with
this notion, we found that addition of sphinganine, but not
ceramide analogues, could reverse the inhibitory effect of
myriocin.
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Initial studies on the effects of myriocin revealed that it
inhibits both CTLL-2 cell proliferation and mouse allogeneic
mixed lymphocyte reaction by inhibiting serine-palmitoyl
transferase.®'%2 It was later discovered that the decrease in
CTLL-2 cell number upon treatment with myriocin was not
because of the inhibition of cell cycle progression but a
consequence of apoptosis.*® However, the same group found
that myriocin did not induce apoptosis in a mouse pro-B cell
line, indicating that the effect of myriocin depends on the cell
type. Our experiments show that myriocin does not affect IL-2
production (Figure 5) and is similar to the results from Fujita et
al®' Inhibition of apoptosis by myriocin is not limited to A1.1
cells or to CD95-mediated apoptosis. As we have shown,
myriocin also inhibits apoptosis in A20 B cells (Figure 7b), IE5
T-cell hybridoma (Figure 3a) and freshly generated T-cell
blasts (Figure 3b). However, myriocin does not seem to affect
dexamethasone-induced apoptosis of thymocytes (data not
shown). The various effects of myriocin are probably owing to
the different amounts and type of sphingolipids expressed in
different cell types. Ratios of different sphingolipid intermedi-
ates might determine what effect myriocin will have on a
specific cell type.

Toxicological studies with FB1 reveal that exposure to this
toxin leads to an accumulation of high concentrations of the
cytotoxic sphingolipid sphinganine.®®®' By inhibiting cera-
mide synthesis with FB1, sphinganine is prevented from being
converted to ceramide, thus, sphinganine accumulates and
facilitates cell death. It is worthy of note that although we did
not see an inhibitory effect of FB1 on activation-induced
apoptosis, we found that FB1 could inhibit radiation-induced
apoptosis in A1.1 cells (data not shown). Therefore, the
amount of FB1 we used is effective in modulating ceramide
production and the effect we saw on AICD is not because of a
general toxicity.

Our investigation has excluded the possibility that myriocin
inhibits AICD by modulating CD95 and CD95L expression.
We could not determine whether CD95 or CD95L surface
expression was affected by myriocin because available
antibodies do not stain FasL on A1.1 cells. However, in other
T-cell hybridoma IE5, FasL could be detected by surface
staining. We have found that activation-induced CD95
and CD95L expression on IE5 surface is not affected by
myriocin (data not shown). Using Northern blot analysis, we
discovered that CD95 and CD95L expressions were not
affected by myriocin; therefore, we examined the effect of
myriocin on CD95-induced cell death process. The ability of
myriocin to prevent CD95-triggered apoptosis was supported
by data from A20 cells. A20 cells treated with JO2 undergo
CD95-mediated apoptosis. However, A20 cells treated with
both JO2 and myriocin did not undergo apoptosis. This also
suggests that myriocin inhibits the cell death signal following
CD95 ligation. Since myriocin seemed to be inhibiting
apoptosis following CD95 ligation, we examined whether
caspase activation was affected. We found that myriocin is
able to inhibit caspases 3, 8 and 9 activation. These results
indicate modulation of caspases by sphingolipids during
AICD, pointing to a novel regulatory mechanism. Thus, our
studies reveal the requirement of de novo sphingolipid
synthesis in AICD. Exogenous administration of sphinganine
has been shown to induce apoptosis in hepatoma cells, a
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mechanism which involves caspase activation.>? Further-
more, CD95-mediated cell death has been shown previously
to involve sphingolipids,®®>~2° but in a ceramide-independent
mechanism.%®%” The precise mechanism of sphinganine-
modulated caspase activation is not known; however, it may
be involved with the formation of the DISC, since caspase 8
activation requires its recruitment into the DISC. Therefore,
our observation that caspase activation is inhibited by
myriocin may be because of the lack of DISC formation. We
are currently determining whether myriocin can inhibit DISC
formation and investigating whether raft formation is required.

Materials and Methods

Cells and reagents

A1. 1 murine T-cell hybridoma cells were maintained in RPMI-1640 media
(GIBCO, Gaithersburg, MD, USA) with 5% FBS (GIBCO, Gaithersburg,
MD, USA) and full complement of antibiotics/antimycotics in humidified
atmosphere supplemented with 5% CO, at 37°C. A20 cells were
maintained as described by Mueller and Scott.%® Myriocin was obtained
from Dr. Fujita. Fumonisin B1 (FB1), C2 Ceramide and C6 Ceramide, were
purchased from Calbiochem (La Jolla, CA, USA). Sphinganine (DL-
erythro-dihydro-sphingosine) was purchased from Sigma (St. Louis, MO,
USA).

Generation of T-cell blasts

Murine splenocytes were isolated from 10-week-old female Balb/c mice
(National Cancer Institute, Frederick, MD, USA). Single-cell suspension
was generated from spleen by pressing between the frosted ends of
microscope slides and passing through 70 um nylon cell strainers. Cells
were activated with anti-CD3 for 48 h and then maintained in the presence
of IL-2 for another 48 h. Cells were maintained in RPMI 1640 medium
(Gibco/BRL, Gaithersburg, MD, USA), supplemented with 2mM L-
glutamine, 50 mM 2-mercaptoethanol, 10% heat-inactivated fetal bovine
serum (Sigma, St. Louis, MO, USA), and 10 mM gentamycin.

DNA content analysis

After treatment, cells were fixed with 70% ethanol for at least 30 min at
4°C, followed by two washes with PBS. The fixed splenocytes were then
incubated in PBS containing propidium iodide (Sigma, St. Louis, MO,
USA) at 50 ug/ml and RNase (Boehringer Mannheim, Indianapolis, IN,
USA) at 0.1 mg/ml at room temperature for 30 min. DNA content was
determined by flow cytometry on FacScan (Becton Dickinson, San Jose,
CA, USA). The FL2 intensity was plotted as histograms on a linear scale.
Apoptotic cells were shown as a hypodiploid peak.

Northern blotting

Total RNA was isolated with affinity columns (QIAGEN, Chatsworth, CA,
USA), according to the manufacturer's recommended protocol. RNA
samples were fractionated on 1% agarose/2.2 M formaldehyde denaturing
gel, and transferred onto a Nytran membrane (Schleicher & Schuell, Inc.,
Keene, NH, USA). Mouse CD95 and CD95L cDNA probes (from Dr.
Shigekazu Nagata, Osaka Bioscience Institute, Japan) were randomly
primed with [*P]-dCTP (Boehringer Mannheim, Indianapolis, IN, USA)
according to the manufacturer's instructions. Prehybridization and
hybridization were carried out at 42°C in a solution containing 5 x SSC



(10 x SSC is 1.5M NaCl, 0.15M sodium citrate), 2.5 mM EDTA, 0.1%
SDS, 5 x Denhardt's solution, 2mM sodium pyrophosphate, 50 mM
sodium phosphate, and 50% formamide. Membranes were washed with
0.2 x SSC, 0.1% SDS at 56°C for 1h and hybridization signals were
detected by autoradiography.

IL-2 ELISA

IL-2 in culture supernatants was detected with the cytoscreen
Immunoassay kit (Biosource, Camarillo, CA, USA) according to the
manufacturer's recommended protocol. Recombinant murine IL-2 was
used as standard. Briefly, the tissue culture supernatant was diluted in a
standard diluent buffer included in the kit. Standard cytokines and samples
were incubated on the first respective cytokine-specific antibodies-coated
microtiter plates for 1.5h at 37°C. After washing, the bound cytokines
were detected with biotinylated second cytokine-specific antibody and
streptavidin peroxidase. The amount of cytokines was determined by the
addition of tetramethyl benzidine. The amount of IL-2 was determined by
recession curves obtained from recombinant murine IL-2 provided in the
kit.

Caspase assay

Caspases-8, -9 and -3 activities were determined using ApoAlert Caspase
Fluorescent Assay Kits (Clontech, Palo Alto, CA, USA) according to the
manufacturer's recommended protocol. Briefly, upon treatments, 2 x 10°
cells were resuspended in 50 ul of lysis buffer included in the kits and
incubated on ice for 10 min. Upon centrifugation, the lysate supernatant
was isolated and mixed witha 2 x reaction buffer/DTT mix. Upon addition
of the specific substrate peptide, labeled with chromophore p-nitroaniline,
the reaction was carried out at 37°C for 1 h. The activity of caspases was
determined at 400 nm excitation and 505 nm emission.
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