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This timeline of cell death (Figure 1), illustrates how
independent strands of research coalesced in the field known
as apoptosis ± currently the hottest field of biological
research. Although the fact that cells die during normal
development was recognized over 150 years ago,1 this was
forgotten, only to be re-discovered several times until the
influential review by Glucksmann in 1951.2 Even after this
time, up until the late 1980's, study of physiological cell death
processes, in which an organism's cells activate intrinsic
mechanisms for the purpose of killing themselves, remained
relatively obscure, usually with less than 10 papers published
each year.

Initially, analysis of cell death was mainly morphologi-
cal, and between the late 1800's and 1960's elegant
figures were published illustrating the light (see reviews by
Clarke and Clarke and Lockshin)82,83 and electron
microscopic3 features of cell death, such as cell shrinkage,
chromatin condensation, break-up of the cell and its
engulfment.

Even well after the proposal of the term `apoptosis' for
cell death in 1972,8 interest remained low. The `modern' era
of cell death research, and the explosion of interest in the
field, came with the identification of the biochemical and
genetic processes that implement it, beginning with
recognition of the first component of the cell death system,
Bcl-2, in 1988.20 Since then, growth of the field has been
exponential, and currently over 200 publications appear
every week that refer to `apoptosis'. A genetic under-
standing of cell death has primarily come from study of C.
elegans, in which 131 of the 1090 somatic cells formed in
the hermaphrodite are fated to die during development.16

This started with the recognition of cell death in the worm in
1976,11 and generation of the first ced (cell death
abnormal) mutants in 1983.14 In 1982, in a journal that
unfortunately folded soon after, a paper appeared providing
evidence that cell deaths in the worm were caused by a
process that was specific for cell death, and had no other
role, indicating that cell death in the worm is an active
process whose only purpose is to remove unwanted cells.13

Similar conclusions were reached earlier in vertebrate
systems, such as when Tata showed that cell deaths
during tadpole metamorphosis could be inhibited by
cycloheximide, and therefore required the cell's own
proteins.6

At this time, the term most commonly used for the study
of these cell death was `programmed cell death', first used
in 1965 to describe developmental cell deaths in insect
systems by Lockshin and Williams.5 The term `apoptosis'
was proposed in 1972 by Kerr and colleagues,8 who
realized that the morphology of cells dying due to toxins or
hormones resembled that described for developmental cell
death by Glucksmann.2 For Kerr, this did not mark the
beginning of apoptosis research, because he had been
studying it continuously since his first publication on cell
death in 1965;4 rather, it marked the adoption of a new
terminology, because until then he had used the terms
such as `shrinkage necrosis'.

The first marker of physiological cell death that did not
rely on morphology came with the recognition that cell
death is usually accompanied by rapid activation of
endonucleases.10 Subsequently, `ladders' seen after elec-
trophoresis of cleaved DNA9 were specifically associated
with apoptosis.12 It took a further 17 years to identify the
major endonuclease responsible (DFF/CAD).63,64 The
observation that phosphatidyl serine is exposed on dying
cells32 provided another convenient marker of apoptosis,
and also gave an early lead into how dead cells are
recognized prior to their engulfment. Although genetic
analysis of cell death progressed most rapidly in the worm,
with identification of more and more ced mutant lines,16,29

biochemical analysis of cell death was faster in mammals.
While Bcl-2 was cloned in 1986,17,18 and its role in cell
death was established in 1988,20 the first ced gene to be
cloned and sequences was ced-4 in 1992.31

Comparisons of the morphological and anatomical
features of developmental cell deaths in invertebrates and
vertebrates have been made since 1969,7 but unification of
the molecular processes of cell death did not occur until
1992, when it was shown that the human bcl-2 gene could
inhibit developmental cell death in the worm.30 This united
`apoptosis' in vertebrates with `programmed cell death' in
invertebrates, showing them to be the same, evolutionarily
conserved process, and it meant that discoveries based on
genetics in C. elegans could be applied to analysis of
apoptosis in mammalian cells.

While Bcl-2 was the first component of the apoptosis
mechanism to be recognized, it had been cloned not
because it was a cell death gene, but because it is
translocated in follicular lymphoma, one of the most
common cancers of blood cells in humans. Initially, it was
assumed that bcl-2 may be like other oncogenes involved
in translocations, such as abl and c-myc, and be a
promoter of cell proliferation, but it turned out that when
bcl-2 was over-expressed, it did not stimulate cell division,
but prevented cells from dying when growth factor was
removed.20 These experiments therefore not only identified
Bcl-2 as a component of the apoptosis mechanism, but
showed that inhibition of cell death could ultimately lead to
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Figure 1 Over 50 000 papers have been published on apoptosis, and it is only possible to give an indication of some of them in this figure. Many, many, important
papers have therefore been omitted. In most cases, only the first member of a protein family is mentioned (that is why the cloning of all the Bcl-2 family members, or
all the caspases, are not listed). This figure only depicts findings that are widely accepted. There are many important molecules, or findings, whose roles or
interpretations are recent or remain controversial, and have therefore not been shown (e.g. ceramide; the channel forming role of Bcl-2 family members;
mitochondrial permeability transition; DAP kinase; DAP3, Survivin; DAXX; FAP1; reactive oxygen intermediaries; BAG-1; AIF; AVEN, etc., etc.). Other (non-
caspase mediated) mechanisms of cell death, and cell death research on non-metazoans, has not been included
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cancer in humans. The realization that one of the roles of
p53, the most commonly mutated gene in human cancers,
is to cause apoptosis,25 further emphasized this link, as did
the demonstration that p53 causes apoptosis via the
mechanism that can be blocked by Bcl-2.84 Bcl-2 also
provided the first experimental evidence linking inhibition of
cell death with autoimmune disease, when it turned out that
on certain genetic backgrounds transgenic mice expressing
bcl-2 in their lymphocytes developed a disease resembling
systemic lupus erythematosus.23 This link was further
strengthened when the gene altered in lpr mice, which
also develop a lupus-like autoimmune syndrome, turned out
to be CD95 (Fas/APO-1),33 a TNF receptor family
member24 that was known to signal apoptosis when
crosslinked by antibodies.21,22 Furthermore, mice lacking
bim, which encodes a so-called `BH3 only' pro-apoptotic
Bcl-2 homologue, also develop autoimmune disease.76

The effector proteases of apoptosis, now known as
caspases, were first recognized when the ced-3 gene,
which is essential for programmed cell death in the worm,16

was cloned and sequenced,35,36 and found to resemble the
mammalian gene for the cysteine protease interleukin 1b
converting enzyme, which had been cloned in 1992.85,86

Crystallography revealed that active caspases are hetero-
tetramers formed from inactive zymogens.41,42 This fo-
cussed interest on what activates caspases, and what
inhibits them.

Key findings have included the elucidation of a caspase
activation pathway that originates in the plasma membrane,
and proceeds from CD95, via the adaptor FADD, to
activate caspase 8,44,45,57,58 and the findings that in C.
elegans the adaptor CED-4 directly binds to and activates
the caspase CED-3.67,68,70,71 Identification of mammalian
homologues of these proteins (Apaf-1 and caspase 9)60,87

showed that a similar pathway operates in mammals, and
revealed cytochrome c to be a molecule capable of
activating Apaf-1.59 Many of the interactions between these
cell death molecules involve related protein-protein interac-
tion motifs termed death domains, death effector domains
and caspase recruitment domains.62

While it is clear that anti-apoptotic Bcl-2 like proteins act
upstream of caspases to prevent their activation, and pro-
apoptotic Bcl-2 family members such as Bax34 promote
caspase activity, debate remains about exactly how they
work. Biochemical experiments using C. elegans proteins
have suggested that CED-9 (the worm homologue of Bcl-2)
inhibits cell death by directly binding to CED-4,65 ± 69 but it
is unclear whether similar direct interactions occur between
their mammalian counterparts.

Solving the structure of Bcl-x,56 a Bcl-2 family member,
raised the alternative possibility that these proteins act as
membrane pores or ion channels, to somehow influence
release of pro-apoptotic molecules such as cytochrome c
from the mitochondria. From both structural studies, and
genetics in C. elegans, it is, however, clear that anti-
apoptotic Bcl-2 family members can be bound, and
antagonized by, `BH3 only' proteins such as Bim and Noxa
in mammals,76,88 and EGL-1 in the worm,74 thus increasing
the likelihood that a cell will undergo apoptosis. BH3 only
proteins are key determinants of cell death in worms and

vertebrates. All somatic developmental cell death in C.
elegans require EGL-1,74 and in mammals p53-dependent
apoptosis seems to be signalled in large part via Noxa.88

The discovery that the helical BH3 domain of one Bcl-2
family member can bind to a hydrophobic pocket on the
surface of another73 has helped explain how pro-death Bcl-
2 family proteins antagonize their anti-apoptotic cousins.

Not all physiological cell deaths in animals are cell
autonomous (i.e. cell `suicide'), sometimes one cell kills
another cell (i.e. cell `murder'). In C. elegans, death of the
male linker cell is non-cell autonomous,16 and in mammals,
cytotoxic T cells (CTL) kill other host cells, especially those
infected by viruses. Targets of CTL killing display the
characteristic features of apoptosis,89 and it became clear
why when the mechanisms involved in CTL killing were
elucidated. CTL can kill by perforin-dependent, granule
exocotysis, which involves granzyme B, a serine protease
with a similar substrate specificity to the caspases,27,28 or
via CD95L-CD95 interactions, which activate caspase
8.57,58 Knowledge of the enzymes involved in CTL killing
therefore allowed unification of cell autonomous and non-
cell autonomous cell deaths, and explained the shared
apoptotic appearances.37

CTL killing illustrates the role of apoptosis in defense
against viruses. But viruses have been selected that carry
inhibitors of apoptosis. Several direct inhibitors of caspase
activity were first found in viruses, and for some, cellular
homologues were later identified. The first caspase inhibitor
found was CrmA, a product of cowpox virus that was
known to inhibit interleukin 1b converting enzyme (caspase
1),90 but is now known to also inhibit caspase 8, and
thereby can block CD95 and TNFR signalled apoptosis.91

The gene for p35 was first found in baculoviruses,26 as
were the first inhibitor of apoptosis (IAP) genes.40 Both p35
and IAPs act by binding directly to, and thereby inhibiting,
active caspases.48,61 Several mammalian IAP homologues
have been discovered,49 ± 54 and one, c-IAP2, is commonly
translocated in MALT lymphomas, where it is expressed as
a fusion with the MLT/paracaspase gene product.75,79

In insects three different proteins, Reaper, HID and
Grim,39,55,92 promote apoptosis by antagonizing the IAPs,72

and a mammalian protein, Smac/Diablo, has been found that
inhibits mammalian IAPs in a similar way.77,78 The identifica-
tion of a similar BIR-interacting N-terminal motif in processed
caspase 9 revealed how Smac/Diablo can displace caspase
9 from IAPs.81 A tremendous effort is now being expended to
discover even more about how apoptosis works, and to
resolve some of the controversies that remain. It is still not
clear how Bcl-2 family members work, or how cytokines
prevent default activation of the cell death mechanisms, or
even whether in mammalian cells prevention of caspase
activity will allow long-term survival. The answers to such
questions are not trivial, but will determine to what extent
these wonderful, yet curiously delayed, discoveries in basic
science will be easily applied to the development of novel
therapeutic agents for the treatment of diseases in which cell
death fails to occur or occurs inappropriately. The first non-
peptide caspase inhibitory drugs are proving useful in animal
models of sepsis,80 suggesting apoptosis-based therapies
are not far away.
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