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Abstract
Intraepithelial lymphocytes (IEL) of the small murine bowel
represent a unique population of mostly CD8+ T lymphocytes
that reside within the epithelial cell layer of the intestinal
mucosa. The close interaction with epithelial cells appears to
be crucial for IEL survival since isolation and ex vivo culture
induces massive apoptosis in this lymphocyte population.
Here, we provide evidence that this form of IEL cell death may
be mediated at least in part by endogenously produced
glucocorticoids since adrenalectomy or treatment of mice
with a glucocorticoid receptor antagonist significantly
enhanced ex vivo survival of IEL. We further demonstrate
that ex vivo activation of IEL induces upregulation of anti-
apoptotic gene products, compensates for the lack of survival
cytokines and rescues from apoptotic cell death. Thus, similar
to thymocytes and T cell hybridomas, IEL survival may be
regulated by the antagonistic action of TCR activation and
glucocorticoids. Cell Death and Differentiation (2001) 8, 706 ±
714.
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Introduction

Intraepithelial lymphocytes are a unique population of
lymphocytes whose function in the immune defense and
regulation is still poorly understood. IEL of the small murine
intestine comprise mostly of CD8+ T cells, and whereas in the

peripheral lymphatic organs, only T cells with a CD8ab
heterodimer are found, a significant portion of IEL expresses
CD8aa homodimers. Similarly, T cell receptor (TCR) gd-
expressing lymphocytes are rarely found in the spleen and
lymph nodes, but represent an important population in the
intestinal mucosa (reviewed in 1 ± 3). Recent evidence
suggests that CD8aa IEL may not originate from thymic
precursors, but develop and mature directly in the intestinal
mucosa in so-called cryptopatches.4

Although IEL have been suggested to play an important
role in host defense, in particular in the protection of
the intestinal mucosa from infection by parasites and
viruses,5 ± 8 the investigation of IEL functions has been
complicated by the low survival rate of isolated ex vivo
cultured IEL.9 ± 11 The close association of IEL with
epithelial cells of the intestinal mucosa appears to be
crucial for IEL survival. Isolation of IEL from their epithelial
environment and ex vivo culture leads to accelerated
apoptotic cell death. This form of death-by-neglect is
presumably caused by the lack of epithelial cell-derived
survival factors since epithelial cell-derived cytokines, such
as interleukin-7 and -15, significantly enhance IEL
survival.9,11

Although IEL poorly proliferate in response to ex vivo
stimulation, they exhibit potent ex vivo cytotoxicity.7,12,13

Yet, differential responses of IEL to TCR stimulation are still
poorly understood. Here we now show that stimulation of
IEL via TCR or by addition of phorbolmyristate acetate
(PMA) and ionomycin can compensate for the lack of
epithelial cell-derived survival factors and induces ex vivo
survival. This enhanced survival is most likely caused by
induction of anti-apoptotic gene products since IEL
activation leads to enhanced expression of cellular inhibitor
of apoptosis (cIAP)-1 and -2, and Bcl-xL. Our data provide
further evidence that death-by-neglect of ex vivo cultured
IEL may be (at least in part) caused by glucocorticoids. IEL
isolated form adrenalectomized animals showed enhanced
ex vivo survival. Similarly, in vivo treatment of animals with
the glucocorticoid receptor antagonist RU-486 (mifepristone)
resulted in reduced ex vivo apoptosis whereas in vivo
treatment with glucocorticoids lead to accelerated cell death.
Our data indicate that TCR stimulation and glucocorticoids
exhibit antagonistic activity on IEL survival, similarly to that
observed in thymocytes and T cell hybridomas.14,15

Results

Analysis of ex vivo IEL apoptosis

In this study we have analyzed the regulation of cell death and
survival of murine intestinal intraepithelial lymphocytes.
Figure 1A shows a typical section through the small
intestine. IEL are detected between epithelial cells at the
basolateral side of the epithelial cell layer. To study ex vivo
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survival, IEL were isolated from the epithelial cell layer of the
small bowel and enriched by density centrifugation. Either
freshly isolated or upon ex vivo culture, apoptotic cell death
was assessed by simultaneous staining for cell surface CD8a
and CD8b, and detection of phosphatidylserine exposure by
Annexin V (Figure 1B).16 This methodological approach
allowed comparative and quantitative analysis of early
apoptosis in the two major IEL subsets, i.e. CD8aa+ and
CD8ab+ IEL. Figure 1B also shows that IEL undergoing
apoptotic cell death show a characteristic reduction in cell size
(FSC) and increase in light scatter (SSC). This apoptotic
morphology was further confirmed by TUNEL (TdT-mediated

dUTP nick end labeling) (data not shown) and fluorescence
microscopy using ethidium bromide/acridine orange staining.
Figure 1D shows a typical example of an apoptotic IEL with a
fragmented nucleus.

Spontaneous ex vivo apoptosis of IEL is not
caused by CD95 ligand or TNFa

Previous reports have shown that ex vivo cultured intestinal
IEL are very susceptible to apoptotic cell death.9 ± 11 Similarly,
we have found that both major IEL subsets, CD8ab+ and
CD8aa+ IEL, exhibited significant apoptotic cell death already

Figure 1 Ex vivo apoptosis of IEL is not caused by CD95L or TNFa. (A) Histological section through the mucosa of the small intestine. IEL are indicated by arrows,
EC, epithelial cells, LP, lamina propria. (B) Assessment of IEL apoptosis. IEL preparations were stained with anti-CD8a-Cy-chrome (FL-3), CD8b-PE (FL-2) and
Annexin V-FITC (FL-1) as described in Materials and Methods, and analyzed by flow cytometry. Electronic gates were set around lymphocytes to discriminate
epithelial cells. Annexin V binding was then assessed in the CD8aa+ and CD8ab+ IEL populations. (C, D) Assessment of apoptotic morphology in freshly isolated
IEL (C), and IEL cultured for 5 h ex vivo (D). Cells were stained with ethidium bromide and acridine orange and analyzed by fluorescence microscopy. (E) Analysis
of ex vivo IEL apoptosis. Freshly isolated IEL or spleen cells, or T cell blasts were cultured with PMA (20 ng/ml) and ionomycin 200 ng/ml) (IEL) or plate-bound anti-
CD3 (2 ug/ml) (spleen cells, T cell blasts). Death receptor-induced apoptosis was blocked by addition of soluble CD95-Fc or neutralizing anti-TNFa. Survival of the
different T cell subsets after overnight culture was assessed by Annexin V staining
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after 5 h ex vivo culture and very few cells survived overnight
culture (Figure 1E, and data not shown). In different
experiments, we always observed high rates of spontaneous
ex vivo apoptosis of IEL (average of 11 independent
experiments: 60+16% Annexin V+ cells after 6 ± 8 h ex vivo
culture). Experiments with highly purified IEL (sorted by flow
cytometry) indicate that dying contaminating epithelial cells
within the IEL preparation are not the underlying cause of IEL
death since similar or even elevated rates of apoptosis were
observed in purified vs enriched IEL, respectively
(73.2+7.4% (n=6) vs 64.2+15.9% (n=12), mean+S.D.).
Members of the TNF/TNF receptor family have been
implicated in T lymphocyte apoptosis (reviewed in17 ± 20).
Restimulation of previously activated T cell blasts causes
CD95/CD95L-dependent activation-induced cell death
(AICD) which is blocked by soluble CD95-Fc fusion protein
(Figure 1E),21 ± 24 but not by neutralizing anti-TNFa (Figure
1E).25 As reported previously, freshly isolated splenic T
lymphocytes were found to be relatively resistant to
spontaneous and activation-induced apoptosis (Figure
1E).26 Our data, however, indicate that CD95/CD95 ligand
or TNFa/TNF receptors interactions are most likely not
responsible for the spontaneous ex vivo demise of IEL since
antagonistic soluble CD95-Fc fusion protein or neutralizing
anti-TNFa could not reverse the high rate of IEL apoptosis
(Figure 1E). And, whereas restimulation of T cell blasts
caused CD95/CD95L-dependent AICD, stimulation of IEL
rather induced a significant reduction in ex vivo apoptosis
(Figure 1E).

A role for glucocorticoids in ex vivo
death-by-neglect

The underlying reason for the high rate of ex vivo IEL
apoptosis is currently unclear. It has been suggested that
epithelial cell-derived cytokines, such as IL-7 and IL-15, may
regulate IEL survival in vivo and the lack of these survival
factors may contribute to IEL apoptosis in vitro.11,27 ± 29 IEL
have been reported previously to be exposed to and be
affected by glucocorticoids in vivo and in vitro.30 ± 32

Glucocorticoids are potent inducers of apoptosis in thymo-
cytes and mature T cells (reviewed in33). Interestingly,
although glucocorticoids can induce apoptosis, they can
also block AICD in T cells, as well as TCR stimulation can
inhibit glucocorticoid-induced cell death.15,34,35 We therefore
investigated whether in vivo generated steroids may be the
trigger of this form of death-by-neglect. To test this
hypothesis, we first injected mice with dexamethasone (a
synthetic glucocorticoid) and analyzed IEL survival upon ex
vivo culture, with or without activation. Figure 2A shows that
IEL isolated from dexamethasone-treated animals exhibited a
reduced survival rate ex vivo, which however, was partially
reverted upon ex vivo stimulation. Spleen cells, analyzed in
parallel for comparison, were found to follow a similar pattern,
yet with reduced sensitivity to dexamethasone (Figure 2A).

We then further assessed whether inhibition of gluco-
corticoid action would reduce IEL ex vivo apoptosis. The
adrenal glands are a major source of glucocorticoids and
adrenalectomy should significantly reduce in vivo glucocor-
ticoid generation. Both major subsets of IEL, CD8aa and

CD8ab, isolated from adrenalectomized animals showed
enhanced ex vivo survival, compared to IEL from sham-
operated mice (Figure 2B). This observation was made in
three independent experiments.

Since the adrenal glands may not represent the only
significant source of glucocorticoids,14 we further aimed at
blocking endogenous glucocorticoid activity by in vivo
administration of RU-486, a glucocorticoid receptor
antagonist.36 Therefore, mice were injected with 1 or
10 mg RU-486, control diluent or 1 mg dexamethasone as
positive control. IEL were isolated 4 h later and apoptosis in
freshly isolated or ex vivo cultured cells was analyzed.
While freshly isolated IEL from control animals and RU-
486-treated animals showed only minimal Annexin V
binding, cells from dexamethasone-treated animals dis-
played already significant phosphatidylserine flip (data not
shown). Ex vivo culture of control IEL for 6 h induced high
rates of apoptosis, as described above, which were further
exceeded in cells isolated from dexamethasone-treated
animals (Figure 2C). Interestingly, however, inhibition of
glucocorticoid activity by RU-486 led to a significant
enhancement of ex vivo IEL survival in both major subsets
(Figure 2C). This effect of RU-486 was dose-dependent
since injection of 10 mg further enhanced ex vivo IEL
survival (data not shown). Thus, we conclude that ex vivo
death-by-neglect is, at least in part, caused by endogen-
ously produced glucocorticoids.

Activation induces resistance to death-by-neglect

The experiment described in Figure 1C suggested that IEL
activation results in enhanced ex vivo survival, rather than
induction of AICD. This may be due to the reported
antagonistic action of TCR and glucocorticoids.15,34,35 In
order to investigate the role of activation signals on IEL
apoptosis, we stimulated IEL with increasing concentrations
of plate-bound anti-CD3 antibody and analyzed IEL apoptosis
after 6 h. Whereas stimulation of primed peripheral T cell
blasts caused CD95/CD95L-dependent AICD (Figure 1C),22

activation of IEL led to a significant reduction in ex vivo
apoptosis. Rescue from this form of death-by-neglect was
dependent on the strength of stimulus since plate-bound anti-
CD3 dose-dependently enhanced IEL survival (Figure 3A).

Activation induces expression of anti-apoptotic
gene products

The results described above suggest that stimulation induces
the expression of anti-apoptotic gene products, preventing the
rapid ex vivo demise of IEL. Members of the Bcl-2 family have
been previously shown to regulate lymphocyte survival, in
particular death-by-neglect (reviewed in37,38). We therefore
analyzed the expression of Bcl-2 and Bcl-xL by RT ± PCR in
freshly isolated IEL, with and without TCR stimulation, and
compared expression levels to those found in spleen cells.
Bcl-2 was expressed only at low levels and no significant gene
induction was observed after stimulation (data not shown). In
contrast, Bcl-xL was not detected in unstimulated IEL, but was
efficiently induced upon IEL activation. In spleen cells, Bcl-xL

was already expressed in unstimulated cells and only a

Cell Death and Differentiation

Apoptosis in intraepithelial lymphocytes
T Brunner et al

708



minimal gene induction was observed upon TCR stimulation.
The anti-apoptotic activity of many members of the Bcl-2

family may be limited to apoptosis stimuli involving
signaling via the mitochondria (reviewed in39). In contrast,
cellular inhibitors of apoptosis (cIAP) act on the level of
caspase activation, central signaling and execution
proteases of most forms of apoptotic cell death (reviewed
in40). We have therefore analyzed the expression of cIAP-1
and cIAP-2 in unstimulated and stimulated IEL. Both, cIAP-
1 and -2 were hardly detectable in unstimulated IEL,
however TCR triggering led to a strong induction of mRNA

expression. Levels of both anti-apoptotic genes were
already elevated in unstimulated spleen cells and were
found unaltered upon activation (Figure 3D).

IEL stimulation prevents the degradation of
apoptosis inhibitors

De novo gene induction of anti-apoptotic molecules may not
represent the only mechanism how ex vivo IEL apoptosis is
prevented by cell stimulation. Yang et al. have recently
reported on the glucocortiocid-induced proteosome-mediated

Figure 2 Role for glucocorticoids in IEL apoptosis. (A) Mice were injected with control diluent or 1 mg dexamethasone for 4 h. IEL and spleen cells were isolated
and cultured in the presence or absence of PMA (20 ng/ml) and ionomycin (200 ng/ml) for further 5 h. Survival was assessed by Annexin V staining as described
above. (B) IEL were isolated from adrenalectomized animals or sham-operated animals (control) and survival after 6 h culture in the different IEL subsets was
assessed. (C) Inhibition of glucocorticoid receptor activity induces protection from ex vivo apoptosis. Mice were injected with control diluent, 1 mg dexamethasone
or 1 mg RU-486 for 4 h. IEL were isolated and survival was assessed after 5 h ex vivo culture
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degradation of IAPs in thymocytes41. We therefore analyzed
whether IAPs may be degraded during IEL apoptosis and
whether stimulation antagonizes this process. cIAP-1 and
XIAP (X-linked inhibitor of apoptosis)42 levels in freshly
isolated IEL, or cells that were left untreated or stimulated
for 3 h, were analyzed by Western blot. Surprisingly,
significant protein levels of cIAP-1 and XIAP were found
already in freshly isolated IEL (Figure 4A), although only

Figure 3 IEL stimulation induces survival. (A) IEL were stimulated with
increasing concentrations of plate-bound anti-CD3 for 6 h and survival in
CD8aa+ or CD8ab+ IEL was assessed by Annexin V staining. (B) Activation of
IEL induces anti-apoptotic genes. IEL and spleen cells were stimulated with
plate-bound anti-CD3 for 4 h and mRNA expression of cIAP-1, cIAP-2, Bcl-xL

and actin was assessed by RT ± PCR

Figure 4 Stimulation prevents degradation of inhibitors of apoptosis protein.
(A) Protein levels of cIAP-1, XIAP, and actin in freshly isolated IEL, or cells
culture with or without anti-CD3 stimulation for 3 h, were analyzed by Western
blotting. Molecular weights of protein standards are indicated. (B) Annexin V
binding on CD8aa+ and CD8ab+ IEL of the same experiment were analyzed in
parallel
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minimal mRNA levels of cIAP-1 and -2 were detected in these
cells (Figure 3D). Ex vivo culture for 3 h was sufficient to
reduce cIAP-1 and XIAP protein to undetectable levels,
suggesting glucocorticoid-induced degradation of these
inhibitors of apoptosis.41 However, significant levels of cIAP-
1 and XIAP were maintained if IEL were stimulated with plate-
bound anti-CD3. Interestingly, while increased IEL apoptosis
was already detected after 3 h ex vivo culture, no difference
was observed between unstimulated and stimulated IEL
(Figure 4B). However, after 5 h ex vivo culture high rates of
cell death were observed in unstimulated cells, whereas
apoptosis in anti-CD3 stimulated IEL was stabilized (Figure
4B). Thus, degradation of cIAP-1 and XIAP precedes
detection of phosphatidylserine exposure. We further con-
clude that both, activation-induced gene induction as well as
activation-induced prevention of degradation of inhibitors of
apoptosis may contribute to ex vivo IEL survival.

Discussion

Although T lymphocytes of the intestinal epithelial cell layer
represent an important number of all immune cells, their role
in host defense and/or immune regulation is still largely
unknown. Recent evidence, however, suggest that IEL-
mediated cytotoxicity is protective during viral infections.7,8

In addition, certain subsets of IEL may represent regulatory T
cells, maintaining immune homeostasis of the intestinal
mucosa and oral tolerance (reviewed in43). Studies on the
role of IEL in host defense and immune regulation have been
complicated by the rapid demise of IEL upon ex vivo
culture.9 ± 11 The intimate contact of IEL with their neighboring
epithelial cells appears to deliver important survival signals
and dissociation of IEL from the epithelial cell layer rapidly
induces apoptosis. Epithelial cells of the intestinal mucosa are
a rich source of a wide variety of cytokines. For example,
epithelial cells produce IL-7 and -15, two important cytokines
in IEL development and survival.11,28,29 Whereas IL-7 has
been described as an essential growth factor for extrathymic
maturating IEL progenitors,28 IL-15 has mitogenic and
survival-inducing activity in mature IEL.9,11 Similarly, targeted
disruption of the common g-chain of the IL-7 and IL-15
receptor results in reduced development of TCRgd+ CD8aa+

IEL.44

While epithelial-derived cytokines can rescue IEL from
ex vivo apoptosis,9,45 the trigger of this death-by-neglect
has not been investigated so far. Our data presented here
provide strong evidence that, at least in part, endogenously
produced glucocorticoids may be involved in this form of
apoptotic cell death. In vivo administration of dexametha-
sone accelerated the ex vivo demise of IEL and, similarly to
spontaneous apoptotic cell death, was antagonized upon
IEL activation. Furthermore, either inhibition of glucocorti-
coid synthesis by adrenalectomy or inhibition of glucocorti-
coid receptor activation by RU-486 resulted in a marked
increase in IEL ex vivo survival. Although the cellular
source and the kinetic of synthesis of the endogenous
glucocorticoids involved in IEL apoptosis induction are
unknown, we may speculate that glucocorticoids must
prime IEL for apoptosis already in vivo. In vivo administra-
tion of RU-486 significantly reduced ex vivo apoptosis,

whereas RU-486 added after the IEL isolation process had
only minimal effect on IEL survival (data not shown).
Recent studies have shown that stress or burn can lead to
generation of high levels of endogenous glucocorticoids,
which may trigger in vivo apoptosis of lymphocytes and
IEL.30,46 Thus, euthanizing mice with CO2 could provoke
sufficient stress to release glucocorticoids from the adrenal
glands. On the other hand, it is possible that low levels of
glucocorticoids are constitutively present in the intestinal
mucosa (possibly produced by other sources than the
adrenal glands?), as a negative regulatory element of the
`physiological inflammation' in the intestine. While adrena-
lectomy significantly reduced IEL apoptosis, a stronger
effect was observed upon in vivo administration of RU-486.
Like IEL, thymocytes are extremely sensitive to glucocorti-
coid-induced apoptosis. Recently, Vacchio and colleagues
reported that thymic epithelial cells are an important
alternative source of glucocorticoids and therefore may
affect thymocyte survival.14 It is thus possible that other
sources of glucocorticoids than adrenal glands, possibly
even cells within the intestinal mucosa, contribute to
apoptosis induction in IEL.

Glucocorticoids have been suggested to affect the
transcriptional activity of NF-kB.47 ± 51 Therefore, expres-
sion NF-kB-dependent survival factors52 ± 54 may be
antagonized by glucorticoids. Inhibition of NF-kB, by over-
expression of IkB or inhibition by lactacystin, has been
shown to sensitize cells to a variety of apoptosis-inducing
stimuli.55 ± 57 Similarly, recent evidence indicates that
dexamethasone induces a proteosome-mediated degrada-
tion of cIAP-1 and XIAP in thymocytes, and subsequently
apoptotic cell death.41 Our findings that `spontanous' ex
vivo apoptosis and dexamethasone-induced apoptosis of
IEL is reduced upon TCR activation would be consistent
with this model of IEL survival. TCR activation leads to
strong induction of NF-kB activity and NF-kB-dependent
survival genes, such as cIAP-1 and -2 (our own data).53

While in the absence of survival-promoting cytokines,
endogenous glucocorticoids may induce apoptosis, IEL
activation via TCR signals appears to antagonize gluco-
corticoid-induced death by inducing and maintaining
expression of anti-apoptotic gene products. Glucocorti-
coids not only induce apoptosis, but may also regulate
immune responses through inhibition of inflammatory
cytokine production (reviewed in58,59) and cytotoxic
effector functions.34,35 Thus, the controlled antagonism
between glucocorticoid action and T cell activation may
be important for the regulation of immune homeostasis in
the intestinal mucosa.

Material and Methods

Reagents and solutions

Anti-CD8a-Cy-chrome, anti-CD8b-PE, and anti-CD4-PE were pur-
chased from PharMingen (La Jolla, CA, USA); anti-CD3e (145-2C11)
anti-TCRab (H57) and anti-TCRgd (GL-3) were purified from hybridoma
supernatant by protein A columns and conjugated to FITC; neutralizing
rabbit anti-mouse TNFa (IP-400) was from Genzyme (Cambridge, MA,
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USA) (anti-TNFa-neutralizing activity was tested in a L929
bioassay)60; Annexin V-FITC was obtained from Bender Biosystems
(Vienna, Austria). The generation of soluble CD95-immunoglobulin
fusion protein (sCD95-Fc) has been reported previously.22,61

Culture medium consisted of RPMI 1640, 10% fetal calf serum,
2 mM L-glutamine, 100 U/ml penicillin, 100 ug/ml streptomycin,
50 uM b-mercaptoethanol, 20 mM HEPES pH 7.4. HEPES-buffered
salt solution (HBS) consisted of 10 mM HEPES pH 7.2, 25 mM
NaHCO3, 5.4 mM KCl, 0.3 mM Na2HPO4, 0.4 mM KH2PO4,
137 mM NaCl, 5.6 mM D-glucose. Percoll and Ficoll were
purchased from Pharmacia (Uppsala, Sweden). Isotonic Percoll
solution was made by adding 1/10 of the volume of 10 times
concentrated HBS. Recombinant interleukin (IL)-2 (proleukin) was
from Chiron (Suresnes, France). Concanavalin A (Con A),
phorbolmyristate acetate (PMA), dexamethasone were from Sigma
(St. Louis, MO, USA), ionomycin from Calbiochem (La Jolla, CA,
USA).

Isolation of IEL from small intestine

Male Balb/c mice were bred and maintained in the animal facility of
the Faculty of Medicine, University of Bern, Switzerland. Age-
matched male adrenalectomized or sham-operated Balb/c mice were
obtained from Harlan (The Nederlands). Mice were euthanized with
CO2 and IEL from the small bowel of 7 ± 10 week old mice were
isolated as described previously.12,62 Briefly, epithelial cells and IEL
were dissociated in HBS, 1 mM DTT and separated on a 40%/70%
Percoll gradient. The interphase containing enriched IEL (usually
between 40 ± 85% CD8+ cells) was washed, resuspended in culture
medium and directly used for experiments. Purified cells usually
consisted of 36.6+12.6% CD8ab+, 39.7+3.8% CD8aa+,
60.2+19.2% TCRab+, 23.8+7.5% TCRgd+ lymphocytes
(mean+S.D. of eight isolations) and were approximately 95%
viable, as monitored by Annexin V binding.16 In some experiments,
IEL were further sorted on a FACSvantage (Becton Dickinson,
Mountain View, CA, USA) based on the lymphocyte gate in the
forward-side scatter.

Spleen cells were isolated by meshing up the spleen between
frosted microscopy glass slides and subsequent hypotonic lysis to
remove erythrocytes.12 After resuspension in complete medium,
cells were either directly used for experiments (spleen cells) or
stimulated for 2 days with 1 ug/ml concanavalin A (Sigma) and
subsequent culture with 100 U/ml recombinant IL-2 for 5 days to
generate T cell blasts. Before being used in an experiment, T cell
blasts were purified by Ficoll density centrifugation to remove dead
cells.

Assessment of apoptosis in distinct T cell subsets

Apoptosis was assessed by the detection of phosphatidylserine on
the cell surface of dying cells.16 Enriched or sorted IEL were
resuspended at 56104 or 16105 cell per 200 ul and cultured in flat-
bottom 96 well plates. If cells were treated with anti-CD3, plates
were previously coated overnight with appropriate concentrations of
anti-CD3 in 50 mM Tris pH 9.0 at 48C and washed three times with
PBS. Other stimuli or reagents were directly added to the cells in
appropriate dilutions at 1/20 of the culture volume. Final DMSO or
ethanol concentrations were always 40.1%. After either 5 ± 6 h or
overnight incubation, cells were harvested, washed once with cold
PBS, 1% calf serum and then stained for 20 min with anti-CD8a Cy-
chrome and anti-CD8b PE at 48C. Cells were subsequently washed
with Annexin V binding buffer (10 mM HEPES pH 7.4, 150 mM

NaCl, 5 mM KCl, 1 mM MgCl2, 1.8 mM CaCl2) and then stained with
Annexin V-FITC (0.5 ug/ml) for 5 min. After two washes with
Annexin V binding buffer, cells were fixed in 1% paraformaldehyde
in Annexin V binding buffer and analyzed on a FACScan flow
cytometer using Cellquest analysis software (Becton Dickinson,
Mountain View, CA, USA). Cells in the lymphocyte gate were
analyzed for their expression of CD8a and CD8b, and CD8aa+ or
CD8ab+ populations were examined for cell death by means of their
Annexin V staining.

For comparison, freshly isolated spleen cells or day 7 T cell
blasts were treated in parallel. Apoptosis was analyzed as described
above, besides that anti-CD4PE and anti-CD8a Cy-chrome were
used to detect Annexin V binding on CD4+ and CD8+ T cells,
respectively.

To further confirm the apoptotic phenotype of IEL, either freshly
isolated cells or ex vivo cultured cells were harvested and stained with
ethidium bromide (100 ug/ml) and acridine orange (100 ug/ml) in PBS,
and immediately analyzed by fluorescence microscopy.63 In some
experiments, DNA fragmentation in apoptotic IEL was detected by
TUNEL using a commercially available kit (Roche Diagnostics
(Rotkreuz, Switzerland).

RT ± PCR for Bcl-2, Bcl-xL, cIAP-1 and cIAP-2

In some experiments, IEL or spleen cells were left either untreated or
stimulated for 5 h with plate-bound anti-CD3. After two washes in PBS,
cells were lysed in Tri-reagent RNA isolation medium (Sigma) and total
RNA was isolated as recommended by the manufacturer. cDNA was
synthesized from 2 ug total RNA using a commercial cDNA kit
(Promega, Madison, WI, USA) using oligo-dT primers and manufac-
turer's suggested conditions. PCR for murine Bcl-2, Bcl-xL, cIAP-1,
cIAP-2 and actin as a control was performed as described
previously.53,64 ± 66 Following primers were used: mBcl-2 sense: 5'-
AGCCCTGTGCCACCATGTGTC-3 ' ; mBcl -2 ant isense: 5 ' -
GGCAGGTTTGTCGACCTCACT-3'; mBcl-xL sense: 5'-TAGTCCAGC-
CAGGGCACGT-3'; mBcl-xL antisense: 5'-GGCTGATATCATACTG-
CAT-3'; actin sense: 5'-TGGAATCCTGTGGCATCCATGAAAC-3';
actin antisense: 5'-TAAAACGCAGCTCAGTAACAGTCCG-3'; mcIAP-
1 sense 5'-GCCATTGTCTTTTCTGTCAC-3', mcIAP-1 antisense 5'-
CTGCGTCTGCATTCTCATC-3'; mcIAP-2 sense 5'-ACCTAGTGTTC-
CTGTTCAGC-3', mcIAP-2 antisense 5'-CCTTCTCCTCTTCTCTTCT-
CTC-3'. PCR was performed in a PTC-100 thermocycler (MJ Research
Inc., Watertown, MA, USA). Bcl-2, cIAP-1, cIAP-2 and actin cDNAs
were amplified for 32 cycles at 1 min 948C, 1 min 558C, 1 min 728C,
followed by 10 min extension at 728C; Bcl-xL cDNA was amplified for
32 cycles at 1 min 948C, 1 min 508C, 1 min 728C, followed by 10 min
extension at 728C. PCR products were resolved on a 4% acrylamide-
16TBE gel and visualized by ethidium bromide staining.

Detection of cIAP-1 and XIAP by Western blot

IEL were cultured for times indicated, harvested and washed in
PBS. Cell pellets were then lyzed in 16reducing SDS ± PAGE
sample buffer (50 mM Tris pH 6.8, 1 mM DTT, 2% SDS, 10%
glycerol, 0.1% bromophenol blue). Equal amounts of protein were
separated on a 12% gel and transferred to PVDF membrane.
Membranes were then blocked in 5% non-fat dry milk and incubated
with anti-cIAP-1, anti-XIAP (R&D Systems, Minneapolis, MN, USA)
(kindly provided by S Martin) or, to assess equal loading, anti-actin
(Amersham). Antibody binding was detected with appropriate horse-
radish peroxidase-conjugated secondary antibodies and ECL
(Amersham).
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In vivo treatment of IEL with glucocorticoid and
RU-486

Balb/c mice were either injected i.p. with carrier only (olive oil, Sigma),
1 mg dexamethasone (Sigma), or 1 or 10 mg of the glucocorticoid
receptor antagonist mifepristone (RU-486; kindly provided by Dr. R
Sitruk-Ware, Laboratoires Exelgyn, Paris, France).36 After 3 h, mice
were sacrificed, and spleen cells and IEL were isolated as described
above. Viability was assessed by Annexin V staining either directly
after isolation or after 6 h culture with agents and stimuli indicated. The
animal studies have been performed after approval by the Animal
Study Review Board of the State of Bern, Switzerland.
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